Source code

Revision control

Copy as Markdown

Other Tools

// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef jit_riscv64_constant_Base_constant_riscv__h_
#define jit_riscv64_constant_Base_constant_riscv__h_
namespace js {
namespace jit {
// On RISC-V Simulator breakpoints can have different codes:
// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
// the simulator will run through them and print the registers.
// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
// instructions (see Assembler::stop()).
// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
// debugger.
const uint32_t kMaxTracepointCode = 63;
const uint32_t kMaxWatchpointCode = 31;
const uint32_t kMaxStopCode = 127;
const uint32_t kWasmTrapCode = 6;
static_assert(kMaxWatchpointCode < kMaxStopCode);
static_assert(kMaxTracepointCode < kMaxStopCode);
// Debug parameters.
//
// For example:
//
// __ Debug(TRACE_ENABLE | LOG_TRACE);
// starts tracing: set v8_flags.trace-sim is true.
// __ Debug(TRACE_ENABLE | LOG_REGS);
// PrintAllregs.
// __ Debug(TRACE_DISABLE | LOG_TRACE);
// stops tracing: set v8_flags.trace-sim is false.
const uint32_t kDebuggerTracingDirectivesMask = 0b111 << 3;
enum DebugParameters : uint32_t {
NO_PARAM = 1 << 5,
BREAK = 1 << 0,
LOG_TRACE = 1 << 1,
LOG_REGS = 1 << 2,
LOG_ALL = LOG_TRACE,
// Trace control.
TRACE_ENABLE = 1 << 3 | NO_PARAM,
TRACE_DISABLE = 1 << 4 | NO_PARAM,
};
// On RISCV all instructions are 32 bits, except for RVC.
using Instr = int32_t;
using ShortInstr = int16_t;
typedef unsigned char byte;
// ----- Fields offset and length.
// RISCV constants
const int kBaseOpcodeShift = 0;
const int kBaseOpcodeBits = 7;
const int kFunct7Shift = 25;
const int kFunct7Bits = 7;
const int kFunct5Shift = 27;
const int kFunct5Bits = 5;
const int kFunct3Shift = 12;
const int kFunct3Bits = 3;
const int kFunct2Shift = 25;
const int kFunct2Bits = 2;
const int kRs1Shift = 15;
const int kRs1Bits = 5;
const int kVs1Shift = 15;
const int kVs1Bits = 5;
const int kVs2Shift = 20;
const int kVs2Bits = 5;
const int kVdShift = 7;
const int kVdBits = 5;
const int kRs2Shift = 20;
const int kRs2Bits = 5;
const int kRs3Shift = 27;
const int kRs3Bits = 5;
const int kRdShift = 7;
const int kRdBits = 5;
const int kRlShift = 25;
const int kAqShift = 26;
const int kImm12Shift = 20;
const int kImm12Bits = 12;
const int kImm11Shift = 2;
const int kImm11Bits = 11;
const int kShamtShift = 20;
const int kShamtBits = 5;
const int kShamtWShift = 20;
// FIXME: remove this once we have a proper way to handle the wide shift amount
const int kShamtWBits = 6;
const int kArithShiftShift = 30;
const int kImm20Shift = 12;
const int kImm20Bits = 20;
const int kCsrShift = 20;
const int kCsrBits = 12;
const int kMemOrderBits = 4;
const int kPredOrderShift = 24;
const int kSuccOrderShift = 20;
// for C extension
const int kRvcFunct4Shift = 12;
const int kRvcFunct4Bits = 4;
const int kRvcFunct3Shift = 13;
const int kRvcFunct3Bits = 3;
const int kRvcRs1Shift = 7;
const int kRvcRs1Bits = 5;
const int kRvcRs2Shift = 2;
const int kRvcRs2Bits = 5;
const int kRvcRdShift = 7;
const int kRvcRdBits = 5;
const int kRvcRs1sShift = 7;
const int kRvcRs1sBits = 3;
const int kRvcRs2sShift = 2;
const int kRvcRs2sBits = 3;
const int kRvcFunct2Shift = 5;
const int kRvcFunct2BShift = 10;
const int kRvcFunct2Bits = 2;
const int kRvcFunct6Shift = 10;
const int kRvcFunct6Bits = 6;
const uint32_t kRvcOpcodeMask =
0b11 | (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift);
const uint32_t kRvcFunct3Mask =
(((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift);
const uint32_t kRvcFunct4Mask =
(((1 << kRvcFunct4Bits) - 1) << kRvcFunct4Shift);
const uint32_t kRvcFunct6Mask =
(((1 << kRvcFunct6Bits) - 1) << kRvcFunct6Shift);
const uint32_t kRvcFunct2Mask =
(((1 << kRvcFunct2Bits) - 1) << kRvcFunct2Shift);
const uint32_t kRvcFunct2BMask =
(((1 << kRvcFunct2Bits) - 1) << kRvcFunct2BShift);
const uint32_t kCRTypeMask = kRvcOpcodeMask | kRvcFunct4Mask;
const uint32_t kCSTypeMask = kRvcOpcodeMask | kRvcFunct6Mask;
const uint32_t kCATypeMask = kRvcOpcodeMask | kRvcFunct6Mask | kRvcFunct2Mask;
const uint32_t kRvcBImm8Mask = (((1 << 5) - 1) << 2) | (((1 << 3) - 1) << 10);
// RISCV Instruction bit masks
const uint32_t kBaseOpcodeMask = ((1 << kBaseOpcodeBits) - 1)
<< kBaseOpcodeShift;
const uint32_t kFunct3Mask = ((1 << kFunct3Bits) - 1) << kFunct3Shift;
const uint32_t kFunct5Mask = ((1 << kFunct5Bits) - 1) << kFunct5Shift;
const uint32_t kFunct7Mask = ((1 << kFunct7Bits) - 1) << kFunct7Shift;
const uint32_t kFunct2Mask = 0b11 << kFunct7Shift;
const uint32_t kRTypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct7Mask;
const uint32_t kRATypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct5Mask;
const uint32_t kRFPTypeMask = kBaseOpcodeMask | kFunct7Mask;
const uint32_t kR4TypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct2Mask;
const uint32_t kITypeMask = kBaseOpcodeMask | kFunct3Mask;
const uint32_t kSTypeMask = kBaseOpcodeMask | kFunct3Mask;
const uint32_t kBTypeMask = kBaseOpcodeMask | kFunct3Mask;
const uint32_t kUTypeMask = kBaseOpcodeMask;
const uint32_t kJTypeMask = kBaseOpcodeMask;
const uint32_t kRs1FieldMask = ((1 << kRs1Bits) - 1) << kRs1Shift;
const uint32_t kRs2FieldMask = ((1 << kRs2Bits) - 1) << kRs2Shift;
const uint32_t kRs3FieldMask = ((1 << kRs3Bits) - 1) << kRs3Shift;
const uint32_t kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
const uint32_t kBImm12Mask = kFunct7Mask | kRdFieldMask;
const uint32_t kImm20Mask = ((1 << kImm20Bits) - 1) << kImm20Shift;
const uint32_t kImm12Mask = ((1 << kImm12Bits) - 1) << kImm12Shift;
const uint32_t kImm11Mask = ((1 << kImm11Bits) - 1) << kImm11Shift;
const uint32_t kImm31_12Mask = ((1 << 20) - 1) << 12;
const uint32_t kImm19_0Mask = ((1 << 20) - 1);
// for RVV extension
#define RVV_LMUL(V) \
V(m1) \
V(m2) \
V(m4) \
V(m8) \
V(RESERVERD) \
V(mf8) \
V(mf4) \
V(mf2)
enum Vlmul {
#define DEFINE_FLAG(name) name,
RVV_LMUL(DEFINE_FLAG)
#undef DEFINE_FLAG
};
#define RVV_SEW(V) \
V(E8) \
V(E16) \
V(E32) \
V(E64)
#define DEFINE_FLAG(name) name,
enum VSew {
RVV_SEW(DEFINE_FLAG)
#undef DEFINE_FLAG
};
constexpr int kRvvELEN = 64;
constexpr int kRvvVLEN = 128;
constexpr int kRvvSLEN = kRvvVLEN;
const int kRvvFunct6Shift = 26;
const int kRvvFunct6Bits = 6;
const uint32_t kRvvFunct6Mask =
(((1 << kRvvFunct6Bits) - 1) << kRvvFunct6Shift);
const int kRvvVmBits = 1;
const int kRvvVmShift = 25;
const uint32_t kRvvVmMask = (((1 << kRvvVmBits) - 1) << kRvvVmShift);
const int kRvvVs2Bits = 5;
const int kRvvVs2Shift = 20;
const uint32_t kRvvVs2Mask = (((1 << kRvvVs2Bits) - 1) << kRvvVs2Shift);
const int kRvvVs1Bits = 5;
const int kRvvVs1Shift = 15;
const uint32_t kRvvVs1Mask = (((1 << kRvvVs1Bits) - 1) << kRvvVs1Shift);
const int kRvvRs1Bits = kRvvVs1Bits;
const int kRvvRs1Shift = kRvvVs1Shift;
const uint32_t kRvvRs1Mask = (((1 << kRvvRs1Bits) - 1) << kRvvRs1Shift);
const int kRvvRs2Bits = 5;
const int kRvvRs2Shift = 20;
const uint32_t kRvvRs2Mask = (((1 << kRvvRs2Bits) - 1) << kRvvRs2Shift);
const int kRvvImm5Bits = kRvvVs1Bits;
const int kRvvImm5Shift = kRvvVs1Shift;
const uint32_t kRvvImm5Mask = (((1 << kRvvImm5Bits) - 1) << kRvvImm5Shift);
const int kRvvVdBits = 5;
const int kRvvVdShift = 7;
const uint32_t kRvvVdMask = (((1 << kRvvVdBits) - 1) << kRvvVdShift);
const int kRvvRdBits = kRvvVdBits;
const int kRvvRdShift = kRvvVdShift;
const uint32_t kRvvRdMask = (((1 << kRvvRdBits) - 1) << kRvvRdShift);
const int kRvvZimmBits = 11;
const int kRvvZimmShift = 20;
const uint32_t kRvvZimmMask = (((1 << kRvvZimmBits) - 1) << kRvvZimmShift);
const int kRvvUimmShift = kRvvRs1Shift;
const int kRvvUimmBits = kRvvRs1Bits;
const uint32_t kRvvUimmMask = (((1 << kRvvUimmBits) - 1) << kRvvUimmShift);
const int kRvvWidthBits = 3;
const int kRvvWidthShift = 12;
const uint32_t kRvvWidthMask = (((1 << kRvvWidthBits) - 1) << kRvvWidthShift);
const int kRvvMopBits = 2;
const int kRvvMopShift = 26;
const uint32_t kRvvMopMask = (((1 << kRvvMopBits) - 1) << kRvvMopShift);
const int kRvvMewBits = 1;
const int kRvvMewShift = 28;
const uint32_t kRvvMewMask = (((1 << kRvvMewBits) - 1) << kRvvMewShift);
const int kRvvNfBits = 3;
const int kRvvNfShift = 29;
const uint32_t kRvvNfMask = (((1 << kRvvNfBits) - 1) << kRvvNfShift);
const int kNopByte = 0x00000013;
enum BaseOpcode : uint32_t {
LOAD = 0b0000011, // I form: LB LH LW LBU LHU
LOAD_FP = 0b0000111, // I form: FLW FLD FLQ
MISC_MEM = 0b0001111, // I special form: FENCE FENCE.I
OP_IMM = 0b0010011, // I form: ADDI SLTI SLTIU XORI ORI ANDI SLLI SRLI SRAI
// Note: SLLI/SRLI/SRAI I form first, then func3 001/101 => R type
AUIPC = 0b0010111, // U form: AUIPC
OP_IMM_32 = 0b0011011, // I form: ADDIW SLLIW SRLIW SRAIW
// Note: SRLIW SRAIW I form first, then func3 101 special shift encoding
STORE = 0b0100011, // S form: SB SH SW SD
STORE_FP = 0b0100111, // S form: FSW FSD FSQ
AMO = 0b0101111, // R form: All A instructions
OP = 0b0110011, // R: ADD SUB SLL SLT SLTU XOR SRL SRA OR AND and 32M set
LUI = 0b0110111, // U form: LUI
OP_32 = 0b0111011, // R: ADDW SUBW SLLW SRLW SRAW MULW DIVW DIVUW REMW REMUW
MADD = 0b1000011, // R4 type: FMADD.S FMADD.D FMADD.Q
MSUB = 0b1000111, // R4 type: FMSUB.S FMSUB.D FMSUB.Q
NMSUB = 0b1001011, // R4 type: FNMSUB.S FNMSUB.D FNMSUB.Q
NMADD = 0b1001111, // R4 type: FNMADD.S FNMADD.D FNMADD.Q
OP_FP = 0b1010011, // R type: Q ext
BRANCH = 0b1100011, // B form: BEQ BNE, BLT, BGE, BLTU BGEU
JALR = 0b1100111, // I form: JALR
JAL = 0b1101111, // J form: JAL
SYSTEM = 0b1110011, // I form: ECALL EBREAK Zicsr ext
OP_V = 0b1010111, // V form: RVV
// C extension
C0 = 0b00,
C1 = 0b01,
C2 = 0b10,
FUNCT2_0 = 0b00,
FUNCT2_1 = 0b01,
FUNCT2_2 = 0b10,
FUNCT2_3 = 0b11,
};
// ----- Emulated conditions.
// On RISC-V we use this enum to abstract from conditional branch instructions.
// The 'U' prefix is used to specify unsigned comparisons.
// Opposite conditions must be paired as odd/even numbers
// because 'NegateCondition' function flips LSB to negate condition.
enum RiscvCondition { // Any value < 0 is considered no_condition.
overflow = 0,
no_overflow = 1,
Uless = 2,
Ugreater_equal = 3,
Uless_equal = 4,
Ugreater = 5,
equal = 6,
not_equal = 7, // Unordered or Not Equal.
less = 8,
greater_equal = 9,
less_equal = 10,
greater = 11,
cc_always = 12,
// Aliases.
eq = equal,
ne = not_equal,
ge = greater_equal,
lt = less,
gt = greater,
le = less_equal,
al = cc_always,
ult = Uless,
uge = Ugreater_equal,
ule = Uless_equal,
ugt = Ugreater,
};
// ----- Coprocessor conditions.
enum FPUCondition {
kNoFPUCondition = -1,
EQ = 0x02, // Ordered and Equal
NE = 0x03, // Unordered or Not Equal
LT = 0x04, // Ordered and Less Than
GE = 0x05, // Ordered and Greater Than or Equal
LE = 0x06, // Ordered and Less Than or Equal
GT = 0x07, // Ordered and Greater Than
};
enum CheckForInexactConversion {
kCheckForInexactConversion,
kDontCheckForInexactConversion
};
enum class MaxMinKind : int { kMin = 0, kMax = 1 };
// ----------------------------------------------------------------------------
// RISCV flags
enum ControlStatusReg {
csr_fflags = 0x001, // Floating-Point Accrued Exceptions (RW)
csr_frm = 0x002, // Floating-Point Dynamic Rounding Mode (RW)
csr_fcsr = 0x003, // Floating-Point Control and Status Register (RW)
csr_cycle = 0xc00, // Cycle counter for RDCYCLE instruction (RO)
csr_time = 0xc01, // Timer for RDTIME instruction (RO)
csr_instret = 0xc02, // Insns-retired counter for RDINSTRET instruction (RO)
csr_cycleh = 0xc80, // Upper 32 bits of cycle, RV32I only (RO)
csr_timeh = 0xc81, // Upper 32 bits of time, RV32I only (RO)
csr_instreth = 0xc82 // Upper 32 bits of instret, RV32I only (RO)
};
enum FFlagsMask {
kInvalidOperation = 0b10000, // NV: Invalid
kDivideByZero = 0b1000, // DZ: Divide by Zero
kOverflow = 0b100, // OF: Overflow
kUnderflow = 0b10, // UF: Underflow
kInexact = 0b1 // NX: Inexact
};
enum FPURoundingMode {
RNE = 0b000, // Round to Nearest, ties to Even
RTZ = 0b001, // Round towards Zero
RDN = 0b010, // Round Down (towards -infinity)
RUP = 0b011, // Round Up (towards +infinity)
RMM = 0b100, // Round to Nearest, tiest to Max Magnitude
DYN = 0b111 // In instruction's rm field, selects dynamic rounding mode;
// In Rounding Mode register, Invalid
};
enum MemoryOdering {
PSI = 0b1000, // PI or SI
PSO = 0b0100, // PO or SO
PSR = 0b0010, // PR or SR
PSW = 0b0001, // PW or SW
PSIORW = PSI | PSO | PSR | PSW
};
const int kFloat32ExponentBias = 127;
const int kFloat32MantissaBits = 23;
const int kFloat32ExponentBits = 8;
const int kFloat64ExponentBias = 1023;
const int kFloat64MantissaBits = 52;
const int kFloat64ExponentBits = 11;
enum FClassFlag {
kNegativeInfinity = 1,
kNegativeNormalNumber = 1 << 1,
kNegativeSubnormalNumber = 1 << 2,
kNegativeZero = 1 << 3,
kPositiveZero = 1 << 4,
kPositiveSubnormalNumber = 1 << 5,
kPositiveNormalNumber = 1 << 6,
kPositiveInfinity = 1 << 7,
kSignalingNaN = 1 << 8,
kQuietNaN = 1 << 9
};
enum OffsetSize : uint32_t {
kOffset21 = 21, // RISCV jal
kOffset12 = 12, // RISCV imm12
kOffset20 = 20, // RISCV imm20
kOffset13 = 13, // RISCV branch
kOffset32 = 32, // RISCV auipc + instr_I
kOffset11 = 11, // RISCV C_J
kOffset9 = 9, // RISCV compressed branch
};
// The classes of immediate branch ranges, in order of increasing range.
// Note that CondBranchType and CompareBranchType have the same range.
enum ImmBranchRangeType {
CondBranchRangeType, //
UncondBranchRangeType, //
UnknownBranchRangeType,
// Number of 'short-range' branch range types.
// We don't consider unconditional branches 'short-range'.
NumShortBranchRangeTypes = UnknownBranchRangeType
};
inline ImmBranchRangeType OffsetSizeToImmBranchRangeType(OffsetSize bits) {
switch (bits) {
case kOffset21:
return UncondBranchRangeType;
case kOffset13:
return CondBranchRangeType;
default:
MOZ_CRASH("Unimplement");
}
}
inline OffsetSize ImmBranchRangeTypeToOffsetSize(ImmBranchRangeType type) {
switch (type) {
case CondBranchRangeType:
return kOffset13;
case UncondBranchRangeType:
return kOffset21;
default:
MOZ_CRASH("Unimplement");
}
}
int32_t ImmBranchMaxForwardOffset(OffsetSize bits);
inline int32_t ImmBranchMaxForwardOffset(ImmBranchRangeType type) {
return ImmBranchMaxForwardOffset(ImmBranchRangeTypeToOffsetSize(type));
}
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-riscv64.cc, as they use named
// registers and other constants.
// An Illegal instruction
const Instr kIllegalInstr = 0; // All other bits are 0s (i.e., ecall)
// An ECALL instruction, used for redirected real time call
const Instr rtCallRedirInstr = SYSTEM; // All other bits are 0s (i.e., ecall)
// An EBreak instruction, used for debugging and semi-hosting
const Instr kBreakInstr = SYSTEM | 1 << kImm12Shift; // ebreak
constexpr uint8_t kInstrSize = 4;
constexpr uint8_t kShortInstrSize = 2;
constexpr uint8_t kInstrSizeLog2 = 2;
class InstructionBase {
public:
enum {
// On RISC-V, PC cannot actually be directly accessed. We behave as if PC
// was always the value of the current instruction being executed.
kPCReadOffset = 0
};
// Instruction type.
enum Type {
kRType,
kR4Type, // Special R4 for Q extension
kIType,
kSType,
kBType,
kUType,
kJType,
// C extension
kCRType,
kCIType,
kCSSType,
kCIWType,
kCLType,
kCSType,
kCAType,
kCBType,
kCJType,
// V extension
kVType,
kVLType,
kVSType,
kVAMOType,
kVIVVType,
kVFVVType,
kVMVVType,
kVIVIType,
kVIVXType,
kVFVFType,
kVMVXType,
kVSETType,
kUnsupported = -1
};
inline bool IsIllegalInstruction() const {
uint16_t FirstHalfWord = *reinterpret_cast<const uint16_t*>(this);
return FirstHalfWord == 0;
}
bool IsShortInstruction() const;
inline uint8_t InstructionSize() const {
return (this->IsShortInstruction()) ? kShortInstrSize : kInstrSize;
}
// Get the raw instruction bits.
inline Instr InstructionBits() const {
if (this->IsShortInstruction()) {
return 0x0000FFFF & (*reinterpret_cast<const ShortInstr*>(this));
}
return *reinterpret_cast<const Instr*>(this);
}
// Set the raw instruction bits to value.
inline void SetInstructionBits(Instr value) {
*reinterpret_cast<Instr*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
// Read a bit field out of the instruction bits.
inline int Bits(int hi, int lo) const {
return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
}
// Accessors for the different named fields used in the RISC-V encoding.
inline BaseOpcode BaseOpcodeValue() const {
return static_cast<BaseOpcode>(
Bits(kBaseOpcodeShift + kBaseOpcodeBits - 1, kBaseOpcodeShift));
}
// Return the fields at their original place in the instruction encoding.
inline BaseOpcode BaseOpcodeFieldRaw() const {
return static_cast<BaseOpcode>(InstructionBits() & kBaseOpcodeMask);
}
// Safe to call within R-type instructions
inline int Funct7FieldRaw() const { return InstructionBits() & kFunct7Mask; }
// Safe to call within R-, I-, S-, or B-type instructions
inline int Funct3FieldRaw() const { return InstructionBits() & kFunct3Mask; }
// Safe to call within R-, I-, S-, or B-type instructions
inline int Rs1FieldRawNoAssert() const {
return InstructionBits() & kRs1FieldMask;
}
// Safe to call within R-, S-, or B-type instructions
inline int Rs2FieldRawNoAssert() const {
return InstructionBits() & kRs2FieldMask;
}
// Safe to call within R4-type instructions
inline int Rs3FieldRawNoAssert() const {
return InstructionBits() & kRs3FieldMask;
}
inline int32_t ITypeBits() const { return InstructionBits() & kITypeMask; }
inline int32_t InstructionOpcodeType() const {
if (IsShortInstruction()) {
return InstructionBits() & kRvcOpcodeMask;
} else {
return InstructionBits() & kBaseOpcodeMask;
}
}
// Get the encoding type of the instruction.
Type InstructionType() const;
OffsetSize GetOffsetSize() const;
inline ImmBranchRangeType GetImmBranchRangeType() const {
return OffsetSizeToImmBranchRangeType(GetOffsetSize());
}
protected:
InstructionBase() {}
};
template <class T>
class InstructionGetters : public T {
public:
// Say if the instruction is a break or a trap.
bool IsTrap() const;
inline int BaseOpcode() const {
return this->InstructionBits() & kBaseOpcodeMask;
}
inline int RvcOpcode() const {
MOZ_ASSERT(this->IsShortInstruction());
return this->InstructionBits() & kRvcOpcodeMask;
}
inline int Rs1Value() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kR4Type ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType ||
this->InstructionType() == InstructionBase::kBType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kVType);
return this->Bits(kRs1Shift + kRs1Bits - 1, kRs1Shift);
}
inline int Rs2Value() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kR4Type ||
this->InstructionType() == InstructionBase::kSType ||
this->InstructionType() == InstructionBase::kBType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kVType);
return this->Bits(kRs2Shift + kRs2Bits - 1, kRs2Shift);
}
inline int Rs3Value() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kR4Type);
return this->Bits(kRs3Shift + kRs3Bits - 1, kRs3Shift);
}
inline int Vs1Value() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType);
return this->Bits(kVs1Shift + kVs1Bits - 1, kVs1Shift);
}
inline int Vs2Value() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType);
return this->Bits(kVs2Shift + kVs2Bits - 1, kVs2Shift);
}
inline int VdValue() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType);
return this->Bits(kVdShift + kVdBits - 1, kVdShift);
}
inline int RdValue() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kR4Type ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType ||
this->InstructionType() == InstructionBase::kUType ||
this->InstructionType() == InstructionBase::kJType ||
this->InstructionType() == InstructionBase::kVType);
return this->Bits(kRdShift + kRdBits - 1, kRdShift);
}
inline int RvcRs1Value() const { return this->RvcRdValue(); }
int RvcRdValue() const;
int RvcRs2Value() const;
int RvcRs1sValue() const;
int RvcRs2sValue() const;
int Funct7Value() const;
inline int Funct3Value() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType ||
this->InstructionType() == InstructionBase::kBType);
return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift);
}
inline int Funct5Value() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType &&
this->BaseOpcode() == OP_FP);
return this->Bits(kFunct5Shift + kFunct5Bits - 1, kFunct5Shift);
}
int RvcFunct6Value() const;
int RvcFunct4Value() const;
int RvcFunct3Value() const;
int RvcFunct2Value() const;
int RvcFunct2BValue() const;
inline int CsrValue() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kIType &&
this->BaseOpcode() == SYSTEM);
return (this->Bits(kCsrShift + kCsrBits - 1, kCsrShift));
}
inline int RoundMode() const {
MOZ_ASSERT((this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kR4Type) &&
this->BaseOpcode() == OP_FP);
return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift);
}
inline int MemoryOrder(bool is_pred) const {
MOZ_ASSERT((this->InstructionType() == InstructionBase::kIType &&
this->BaseOpcode() == MISC_MEM));
if (is_pred) {
return this->Bits(kPredOrderShift + kMemOrderBits - 1, kPredOrderShift);
} else {
return this->Bits(kSuccOrderShift + kMemOrderBits - 1, kSuccOrderShift);
}
}
inline int Imm12Value() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kIType);
int Value = this->Bits(kImm12Shift + kImm12Bits - 1, kImm12Shift);
return Value << 20 >> 20;
}
inline int32_t Imm12SExtValue() const {
int32_t Value = this->Imm12Value() << 20 >> 20;
return Value;
}
inline int BranchOffset() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kBType);
// | imm[12|10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode |
// 31 25 11 7
uint32_t Bits = this->InstructionBits();
int16_t imm13 = ((Bits & 0xf00) >> 7) | ((Bits & 0x7e000000) >> 20) |
((Bits & 0x80) << 4) | ((Bits & 0x80000000) >> 19);
return imm13 << 19 >> 19;
}
inline int StoreOffset() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kSType);
// | imm[11:5] | rs2 | rs1 | funct3 | imm[4:0] | opcode |
// 31 25 11 7
uint32_t Bits = this->InstructionBits();
int16_t imm12 = ((Bits & 0xf80) >> 7) | ((Bits & 0xfe000000) >> 20);
return imm12 << 20 >> 20;
}
inline int Imm20UValue() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kUType);
// | imm[31:12] | rd | opcode |
// 31 12
int32_t Bits = this->InstructionBits();
return Bits >> 12;
}
inline int Imm20JValue() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kJType);
// | imm[20|10:1|11|19:12] | rd | opcode |
// 31 12
uint32_t Bits = this->InstructionBits();
int32_t imm20 = ((Bits & 0x7fe00000) >> 20) | ((Bits & 0x100000) >> 9) |
(Bits & 0xff000) | ((Bits & 0x80000000) >> 11);
return imm20 << 11 >> 11;
}
inline bool IsArithShift() const {
// Valid only for right shift operations
MOZ_ASSERT((this->BaseOpcode() == OP || this->BaseOpcode() == OP_32 ||
this->BaseOpcode() == OP_IMM ||
this->BaseOpcode() == OP_IMM_32) &&
this->Funct3Value() == 0b101);
return this->InstructionBits() & 0x40000000;
}
inline int Shamt() const {
// Valid only for shift instructions (SLLI, SRLI, SRAI)
MOZ_ASSERT((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM &&
(this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101));
// | 0A0000 | shamt | rs1 | funct3 | rd | opcode |
// 31 25 20
return this->Bits(kImm12Shift + 5, kImm12Shift);
}
inline int Shamt32() const {
// Valid only for shift instructions (SLLIW, SRLIW, SRAIW)
MOZ_ASSERT((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM_32 &&
(this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101));
// | 0A00000 | shamt | rs1 | funct3 | rd | opcode |
// 31 24 20
return this->Bits(kImm12Shift + 4, kImm12Shift);
}
inline int RvcImm6Value() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | imm[5] | rs1/rd | imm[4:0] | opcode |
// 15 12 6 2
uint32_t Bits = this->InstructionBits();
int32_t imm6 = ((Bits & 0x1000) >> 7) | ((Bits & 0x7c) >> 2);
return imm6 << 26 >> 26;
}
inline int RvcImm6Addi16spValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | nzimm[9] | 2 | nzimm[4|6|8:7|5] | opcode |
// 15 12 6 2
uint32_t Bits = this->InstructionBits();
int32_t imm10 = ((Bits & 0x1000) >> 3) | ((Bits & 0x40) >> 2) |
((Bits & 0x20) << 1) | ((Bits & 0x18) << 4) |
((Bits & 0x4) << 3);
MOZ_ASSERT(imm10 != 0);
return imm10 << 22 >> 22;
}
inline int RvcImm8Addi4spnValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | nzimm[11] | rd' | opcode |
// 15 13 5 2
uint32_t Bits = this->InstructionBits();
int32_t uimm10 = ((Bits & 0x20) >> 2) | ((Bits & 0x40) >> 4) |
((Bits & 0x780) >> 1) | ((Bits & 0x1800) >> 7);
MOZ_ASSERT(uimm10 != 0);
return uimm10;
}
inline int RvcShamt6() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | nzuimm[5] | rs1/rd | nzuimm[4:0] | opcode |
// 15 12 6 2
int32_t imm6 = this->RvcImm6Value();
return imm6 & 0x3f;
}
inline int RvcImm6LwspValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | uimm[5] | rs1 | uimm[4:2|7:6] | opcode |
// 15 12 6 2
uint32_t Bits = this->InstructionBits();
int32_t imm8 =
((Bits & 0x1000) >> 7) | ((Bits & 0x70) >> 2) | ((Bits & 0xc) << 4);
return imm8;
}
inline int RvcImm6LdspValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | uimm[5] | rs1 | uimm[4:3|8:6] | opcode |
// 15 12 6 2
uint32_t Bits = this->InstructionBits();
int32_t imm9 =
((Bits & 0x1000) >> 7) | ((Bits & 0x60) >> 2) | ((Bits & 0x1c) << 4);
return imm9;
}
inline int RvcImm6SwspValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | uimm[5:2|7:6] | rs2 | opcode |
// 15 12 7
uint32_t Bits = this->InstructionBits();
int32_t imm8 = ((Bits & 0x1e00) >> 7) | ((Bits & 0x180) >> 1);
return imm8;
}
inline int RvcImm6SdspValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | uimm[5:3|8:6] | rs2 | opcode |
// 15 12 7
uint32_t Bits = this->InstructionBits();
int32_t imm9 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x380) >> 1);
return imm9;
}
inline int RvcImm5WValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | imm[5:3] | rs1 | imm[2|6] | rd | opcode |
// 15 12 10 6 4 2
uint32_t Bits = this->InstructionBits();
int32_t imm7 =
((Bits & 0x1c00) >> 7) | ((Bits & 0x40) >> 4) | ((Bits & 0x20) << 1);
return imm7;
}
inline int RvcImm5DValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | imm[5:3] | rs1 | imm[7:6] | rd | opcode |
// 15 12 10 6 4 2
uint32_t Bits = this->InstructionBits();
int32_t imm8 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x60) << 1);
return imm8;
}
inline int RvcImm11CJValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | [11|4|9:8|10|6|7|3:1|5] | opcode |
// 15 12 2
uint32_t Bits = this->InstructionBits();
int32_t imm12 = ((Bits & 0x4) << 3) | ((Bits & 0x38) >> 2) |
((Bits & 0x40) << 1) | ((Bits & 0x80) >> 1) |
((Bits & 0x100) << 2) | ((Bits & 0x600) >> 1) |
((Bits & 0x800) >> 7) | ((Bits & 0x1000) >> 1);
return imm12 << 20 >> 20;
}
inline int RvcImm8BValue() const {
MOZ_ASSERT(this->IsShortInstruction());
// | funct3 | imm[8|4:3] | rs1` | imm[7:6|2:1|5] | opcode |
// 15 12 10 7 2
uint32_t Bits = this->InstructionBits();
int32_t imm9 = ((Bits & 0x4) << 3) | ((Bits & 0x18) >> 2) |
((Bits & 0x60) << 1) | ((Bits & 0xc00) >> 7) |
((Bits & 0x1000) >> 4);
return imm9 << 23 >> 23;
}
inline int vl_vs_width() {
int width = 0;
if ((this->InstructionBits() & kBaseOpcodeMask) != LOAD_FP &&
(this->InstructionBits() & kBaseOpcodeMask) != STORE_FP)
return -1;
switch (this->InstructionBits() & (kRvvWidthMask | kRvvMewMask)) {
case 0x0:
width = 8;
break;
case 0x00005000:
width = 16;
break;
case 0x00006000:
width = 32;
break;
case 0x00007000:
width = 64;
break;
case 0x10000000:
width = 128;
break;
case 0x10005000:
width = 256;
break;
case 0x10006000:
width = 512;
break;
case 0x10007000:
width = 1024;
break;
default:
width = -1;
break;
}
return width;
}
uint32_t Rvvzimm() const;
uint32_t Rvvuimm() const;
inline uint32_t RvvVsew() const {
uint32_t zimm = this->Rvvzimm();
uint32_t vsew = (zimm >> 3) & 0x7;
return vsew;
}
inline uint32_t RvvVlmul() const {
uint32_t zimm = this->Rvvzimm();
uint32_t vlmul = zimm & 0x7;
return vlmul;
}
inline uint8_t RvvVM() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType);
return this->Bits(kRvvVmShift + kRvvVmBits - 1, kRvvVmShift);
}
inline const char* RvvSEW() const {
uint32_t vsew = this->RvvVsew();
switch (vsew) {
#define CAST_VSEW(name) \
case name: \
return #name;
RVV_SEW(CAST_VSEW)
default:
return "unknown";
#undef CAST_VSEW
}
}
inline const char* RvvLMUL() const {
uint32_t vlmul = this->RvvVlmul();
switch (vlmul) {
#define CAST_VLMUL(name) \
case name: \
return #name;
RVV_LMUL(CAST_VLMUL)
default:
return "unknown";
#undef CAST_VLMUL
}
}
#define sext(x, len) (((int32_t)(x) << (32 - len)) >> (32 - len))
#define zext(x, len) (((uint32_t)(x) << (32 - len)) >> (32 - len))
inline int32_t RvvSimm5() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType);
return sext(this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift),
kRvvImm5Bits);
}
inline uint32_t RvvUimm5() const {
MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType);
uint32_t imm = this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift);
return zext(imm, kRvvImm5Bits);
}
#undef sext
#undef zext
inline bool AqValue() const { return this->Bits(kAqShift, kAqShift); }
inline bool RlValue() const { return this->Bits(kRlShift, kRlShift); }
};
class Instruction : public InstructionGetters<InstructionBase> {
public:
// Instructions are read of out a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instruction.
// Use the At(pc) function to create references to Instruction.
static Instruction* At(byte* pc) {
return reinterpret_cast<Instruction*>(pc);
}
private:
// We need to prevent the creation of instances of class Instruction.
Instruction() = delete;
Instruction(const Instruction&) = delete;
Instruction& operator=(const Instruction&) = delete;
};
// -----------------------------------------------------------------------------
// Instructions.
template <class P>
bool InstructionGetters<P>::IsTrap() const {
return (this->InstructionBits() == kBreakInstr);
}
} // namespace jit
} // namespace js
#endif // jit_riscv64_constant_Base_constant_riscv__h_