Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/loong64/MacroAssembler-loong64.h"
#include "jsmath.h"
#include "jit/Bailouts.h"
#include "jit/BaselineFrame.h"
#include "jit/JitFrames.h"
#include "jit/JitRuntime.h"
#include "jit/loong64/SharedICRegisters-loong64.h"
#include "jit/MacroAssembler.h"
#include "jit/MoveEmitter.h"
#include "util/Memory.h"
#include "vm/JitActivation.h" // js::jit::JitActivation
#include "vm/JSContext.h"
#include "jit/MacroAssembler-inl.h"
namespace js {
namespace jit {
void MacroAssembler::clampDoubleToUint8(FloatRegister input, Register output) {
ScratchRegisterScope scratch(asMasm());
ScratchDoubleScope fpscratch(asMasm());
as_ftintrne_l_d(fpscratch, input);
as_movfr2gr_d(output, fpscratch);
// if (res < 0); res = 0;
as_slt(scratch, output, zero);
as_masknez(output, output, scratch);
// if res > 255; res = 255;
as_sltui(scratch, output, 255);
as_addi_d(output, output, -255);
as_maskeqz(output, output, scratch);
as_addi_d(output, output, 255);
}
bool MacroAssemblerLOONG64Compat::buildOOLFakeExitFrame(void* fakeReturnAddr) {
asMasm().PushFrameDescriptor(FrameType::IonJS); // descriptor_
asMasm().Push(ImmPtr(fakeReturnAddr));
asMasm().Push(FramePointer);
return true;
}
void MacroAssemblerLOONG64Compat::convertUInt32ToDouble(Register src,
FloatRegister dest) {
ScratchRegisterScope scratch(asMasm());
as_bstrpick_d(scratch, src, 31, 0);
asMasm().convertInt64ToDouble(Register64(scratch), dest);
}
void MacroAssemblerLOONG64Compat::convertUInt64ToDouble(Register src,
FloatRegister dest) {
Label positive, done;
ma_b(src, src, &positive, NotSigned, ShortJump);
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT(src != scratch);
MOZ_ASSERT(src != scratch2);
ma_and(scratch, src, Imm32(1));
as_srli_d(scratch2, src, 1);
as_or(scratch, scratch, scratch2);
as_movgr2fr_d(dest, scratch);
as_ffint_d_l(dest, dest);
asMasm().addDouble(dest, dest);
ma_b(&done, ShortJump);
bind(&positive);
as_movgr2fr_d(dest, src);
as_ffint_d_l(dest, dest);
bind(&done);
}
void MacroAssemblerLOONG64Compat::convertUInt32ToFloat32(Register src,
FloatRegister dest) {
ScratchRegisterScope scratch(asMasm());
as_bstrpick_d(scratch, src, 31, 0);
asMasm().convertInt64ToFloat32(Register64(scratch), dest);
}
void MacroAssemblerLOONG64Compat::convertDoubleToFloat32(FloatRegister src,
FloatRegister dest) {
as_fcvt_s_d(dest, src);
}
const int CauseBitPos = int(Assembler::CauseI);
const int CauseBitCount = 1 + int(Assembler::CauseV) - int(Assembler::CauseI);
const int CauseIOrVMask = ((1 << int(Assembler::CauseI)) |
(1 << int(Assembler::CauseV))) >>
int(Assembler::CauseI);
// Checks whether a double is representable as a 32-bit integer. If so, the
// integer is written to the output register. Otherwise, a bailout is taken to
// the given snapshot. This function overwrites the scratch float register.
void MacroAssemblerLOONG64Compat::convertDoubleToInt32(FloatRegister src,
Register dest,
Label* fail,
bool negativeZeroCheck) {
if (negativeZeroCheck) {
moveFromDouble(src, dest);
as_rotri_d(dest, dest, 63);
ma_b(dest, Imm32(1), fail, Assembler::Equal);
}
ScratchRegisterScope scratch(asMasm());
ScratchFloat32Scope fpscratch(asMasm());
// Truncate double to int ; if result is inexact or invalid fail.
as_ftintrz_w_d(fpscratch, src);
as_movfcsr2gr(scratch);
moveFromFloat32(fpscratch, dest);
as_bstrpick_d(scratch, scratch, CauseBitPos + CauseBitCount - 1, CauseBitPos);
as_andi(scratch, scratch,
CauseIOrVMask); // masking for Inexact and Invalid flag.
ma_b(scratch, zero, fail, Assembler::NotEqual);
}
void MacroAssemblerLOONG64Compat::convertDoubleToPtr(FloatRegister src,
Register dest, Label* fail,
bool negativeZeroCheck) {
if (negativeZeroCheck) {
moveFromDouble(src, dest);
as_rotri_d(dest, dest, 63);
ma_b(dest, Imm32(1), fail, Assembler::Equal);
}
ScratchRegisterScope scratch(asMasm());
ScratchDoubleScope fpscratch(asMasm());
// Truncate double to int64 ; if result is inexact or invalid fail.
as_ftintrz_l_d(fpscratch, src);
as_movfcsr2gr(scratch);
moveFromDouble(fpscratch, dest);
as_bstrpick_d(scratch, scratch, CauseBitPos + CauseBitCount - 1, CauseBitPos);
as_andi(scratch, scratch,
CauseIOrVMask); // masking for Inexact and Invalid flag.
ma_b(scratch, zero, fail, Assembler::NotEqual);
}
// Checks whether a float32 is representable as a 32-bit integer. If so, the
// integer is written to the output register. Otherwise, a bailout is taken to
// the given snapshot. This function overwrites the scratch float register.
void MacroAssemblerLOONG64Compat::convertFloat32ToInt32(
FloatRegister src, Register dest, Label* fail, bool negativeZeroCheck) {
if (negativeZeroCheck) {
moveFromFloat32(src, dest);
ma_b(dest, Imm32(INT32_MIN), fail, Assembler::Equal);
}
ScratchRegisterScope scratch(asMasm());
ScratchFloat32Scope fpscratch(asMasm());
as_ftintrz_w_s(fpscratch, src);
as_movfcsr2gr(scratch);
moveFromFloat32(fpscratch, dest);
MOZ_ASSERT(CauseBitPos + CauseBitCount < 33);
MOZ_ASSERT(CauseBitPos < 32);
as_bstrpick_w(scratch, scratch, CauseBitPos + CauseBitCount - 1, CauseBitPos);
as_andi(scratch, scratch, CauseIOrVMask);
ma_b(scratch, zero, fail, Assembler::NotEqual);
}
void MacroAssemblerLOONG64Compat::convertFloat32ToDouble(FloatRegister src,
FloatRegister dest) {
as_fcvt_d_s(dest, src);
}
void MacroAssemblerLOONG64Compat::convertInt32ToFloat32(Register src,
FloatRegister dest) {
as_movgr2fr_w(dest, src);
as_ffint_s_w(dest, dest);
}
void MacroAssemblerLOONG64Compat::convertInt32ToFloat32(const Address& src,
FloatRegister dest) {
ma_fld_s(dest, src);
as_ffint_s_w(dest, dest);
}
void MacroAssemblerLOONG64Compat::movq(Register rj, Register rd) {
as_or(rd, rj, zero);
}
void MacroAssemblerLOONG64::ma_li(Register dest, CodeLabel* label) {
BufferOffset bo = m_buffer.nextOffset();
ma_liPatchable(dest, ImmWord(/* placeholder */ 0));
label->patchAt()->bind(bo.getOffset());
label->setLinkMode(CodeLabel::MoveImmediate);
}
void MacroAssemblerLOONG64::ma_li(Register dest, ImmWord imm) {
int64_t value = imm.value;
if (-1 == (value >> 11) || 0 == (value >> 11)) {
as_addi_w(dest, zero, value);
return;
}
if (0 == (value >> 12)) {
as_ori(dest, zero, value);
return;
}
if (-1 == (value >> 31) || 0 == (value >> 31)) {
as_lu12i_w(dest, (value >> 12) & 0xfffff);
} else if (0 == (value >> 32)) {
as_lu12i_w(dest, (value >> 12) & 0xfffff);
as_bstrins_d(dest, zero, 63, 32);
} else if (-1 == (value >> 51) || 0 == (value >> 51)) {
if (is_uintN((value >> 12) & 0xfffff, 20)) {
as_lu12i_w(dest, (value >> 12) & 0xfffff);
}
as_lu32i_d(dest, (value >> 32) & 0xfffff);
} else if (0 == (value >> 52)) {
if (is_uintN((value >> 12) & 0xfffff, 20)) {
as_lu12i_w(dest, (value >> 12) & 0xfffff);
}
as_lu32i_d(dest, (value >> 32) & 0xfffff);
as_bstrins_d(dest, zero, 63, 52);
} else {
if (is_uintN((value >> 12) & 0xfffff, 20)) {
as_lu12i_w(dest, (value >> 12) & 0xfffff);
}
if (is_uintN((value >> 32) & 0xfffff, 20)) {
as_lu32i_d(dest, (value >> 32) & 0xfffff);
}
as_lu52i_d(dest, dest, (value >> 52) & 0xfff);
}
if (is_uintN(value & 0xfff, 12)) {
as_ori(dest, dest, value & 0xfff);
}
}
// This method generates lu32i_d, lu12i_w and ori instruction block that can be
// modified by UpdateLoad64Value, either during compilation (eg.
// Assembler::bind), or during execution (eg. jit::PatchJump).
void MacroAssemblerLOONG64::ma_liPatchable(Register dest, ImmPtr imm) {
return ma_liPatchable(dest, ImmWord(uintptr_t(imm.value)));
}
void MacroAssemblerLOONG64::ma_liPatchable(Register dest, ImmWord imm,
LiFlags flags) {
// hi12, hi20, low20, low12
if (Li64 == flags) { // Li64: Imm data
m_buffer.ensureSpace(4 * sizeof(uint32_t));
as_lu12i_w(dest, imm.value >> 12 & 0xfffff); // low20
as_ori(dest, dest, imm.value & 0xfff); // low12
as_lu32i_d(dest, imm.value >> 32 & 0xfffff); // hi20
as_lu52i_d(dest, dest, imm.value >> 52 & 0xfff); // hi12
} else { // Li48 address
m_buffer.ensureSpace(3 * sizeof(uint32_t));
as_lu12i_w(dest, imm.value >> 12 & 0xfffff); // low20
as_ori(dest, dest, imm.value & 0xfff); // low12
as_lu32i_d(dest, imm.value >> 32 & 0xfffff); // hi20
}
}
// Memory access ops.
FaultingCodeOffset MacroAssemblerLOONG64::ma_ld_b(Register dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_ld_b(dest, base, offset);
} else if (base != dest) {
ma_li(dest, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_b(dest, base, dest);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_b(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_ld_bu(Register dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_ld_bu(dest, base, offset);
} else if (base != dest) {
ma_li(dest, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_bu(dest, base, dest);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_bu(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_ld_h(Register dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_ld_h(dest, base, offset);
} else if (base != dest) {
ma_li(dest, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_h(dest, base, dest);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_h(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_ld_hu(Register dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_ld_hu(dest, base, offset);
} else if (base != dest) {
ma_li(dest, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_hu(dest, base, dest);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_hu(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_ld_w(Register dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_ld_w(dest, base, offset);
} else if (base != dest) {
ma_li(dest, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_w(dest, base, dest);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_w(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_ld_wu(Register dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_ld_wu(dest, base, offset);
} else if (base != dest) {
ma_li(dest, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_wu(dest, base, dest);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_wu(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_ld_d(Register dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_ld_d(dest, base, offset);
} else if (base != dest) {
ma_li(dest, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_d(dest, base, dest);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_ldx_d(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_st_b(Register src,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_st_b(src, base, offset);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(src != scratch);
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_stx_b(src, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_st_h(Register src,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_st_h(src, base, offset);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(src != scratch);
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_stx_h(src, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_st_w(Register src,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_st_w(src, base, offset);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(src != scratch);
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_stx_w(src, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_st_d(Register src,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = FaultingCodeOffset(currentOffset());
as_st_d(src, base, offset);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(src != scratch);
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = FaultingCodeOffset(currentOffset());
as_stx_d(src, base, scratch);
}
return fco;
}
// Arithmetic-based ops.
// Add.
void MacroAssemblerLOONG64::ma_add_d(Register rd, Register rj, Imm32 imm) {
if (is_intN(imm.value, 12)) {
as_addi_d(rd, rj, imm.value);
} else if (rd != rj) {
ma_li(rd, imm);
as_add_d(rd, rj, rd);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_add_d(rd, rj, scratch);
}
}
void MacroAssemblerLOONG64::ma_add32TestOverflow(Register rd, Register rj,
Register rk, Label* overflow) {
ScratchRegisterScope scratch(asMasm());
as_add_d(scratch, rj, rk);
as_add_w(rd, rj, rk);
ma_b(rd, Register(scratch), overflow, Assembler::NotEqual);
}
void MacroAssemblerLOONG64::ma_add32TestOverflow(Register rd, Register rj,
Imm32 imm, Label* overflow) {
// Check for signed range because of as_addi_d
if (is_intN(imm.value, 12)) {
ScratchRegisterScope scratch(asMasm());
as_addi_d(scratch, rj, imm.value);
as_addi_w(rd, rj, imm.value);
ma_b(rd, scratch, overflow, Assembler::NotEqual);
} else {
SecondScratchRegisterScope scratch2(asMasm());
ma_li(scratch2, imm);
ma_add32TestOverflow(rd, rj, scratch2, overflow);
}
}
void MacroAssemblerLOONG64::ma_addPtrTestOverflow(Register rd, Register rj,
Register rk,
Label* overflow) {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rd != scratch);
if (rj == rk) {
if (rj == rd) {
as_or(scratch, rj, zero);
rj = scratch;
}
as_add_d(rd, rj, rj);
as_xor(scratch, rj, rd);
ma_b(scratch, zero, overflow, Assembler::LessThan);
} else {
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT(rj != scratch);
MOZ_ASSERT(rd != scratch2);
if (rj == rd) {
as_or(scratch2, rj, zero);
rj = scratch2;
}
as_add_d(rd, rj, rk);
as_slti(scratch, rj, 0);
as_slt(scratch2, rd, rj);
ma_b(scratch, Register(scratch2), overflow, Assembler::NotEqual);
}
}
void MacroAssemblerLOONG64::ma_addPtrTestOverflow(Register rd, Register rj,
Imm32 imm, Label* overflow) {
SecondScratchRegisterScope scratch2(asMasm());
if (imm.value == 0) {
as_ori(rd, rj, 0);
return;
}
if (rj == rd) {
as_ori(scratch2, rj, 0);
rj = scratch2;
}
ma_add_d(rd, rj, imm);
if (imm.value > 0) {
ma_b(rd, rj, overflow, Assembler::LessThan);
} else {
MOZ_ASSERT(imm.value < 0);
ma_b(rd, rj, overflow, Assembler::GreaterThan);
}
}
void MacroAssemblerLOONG64::ma_addPtrTestOverflow(Register rd, Register rj,
ImmWord imm,
Label* overflow) {
SecondScratchRegisterScope scratch2(asMasm());
if (imm.value == 0) {
as_ori(rd, rj, 0);
return;
}
if (rj == rd) {
MOZ_ASSERT(rj != scratch2);
as_ori(scratch2, rj, 0);
rj = scratch2;
}
ma_li(rd, imm);
as_add_d(rd, rj, rd);
if (imm.value > 0) {
ma_b(rd, rj, overflow, Assembler::LessThan);
} else {
MOZ_ASSERT(imm.value < 0);
ma_b(rd, rj, overflow, Assembler::GreaterThan);
}
}
void MacroAssemblerLOONG64::ma_addPtrTestCarry(Condition cond, Register rd,
Register rj, Register rk,
Label* label) {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rd != rk);
MOZ_ASSERT(rd != scratch);
as_add_d(rd, rj, rk);
as_sltu(scratch, rd, rk);
ma_b(scratch, Register(scratch), label,
cond == Assembler::CarrySet ? Assembler::NonZero : Assembler::Zero);
}
void MacroAssemblerLOONG64::ma_addPtrTestCarry(Condition cond, Register rd,
Register rj, Imm32 imm,
Label* label) {
SecondScratchRegisterScope scratch2(asMasm());
// Check for signed range because of as_addi_d
if (is_intN(imm.value, 12)) {
as_addi_d(rd, rj, imm.value);
as_sltui(scratch2, rd, imm.value);
ma_b(scratch2, scratch2, label,
cond == Assembler::CarrySet ? Assembler::NonZero : Assembler::Zero);
} else {
ma_li(scratch2, imm);
ma_addPtrTestCarry(cond, rd, rj, scratch2, label);
}
}
void MacroAssemblerLOONG64::ma_addPtrTestCarry(Condition cond, Register rd,
Register rj, ImmWord imm,
Label* label) {
SecondScratchRegisterScope scratch2(asMasm());
// Check for signed range because of as_addi_d
if (is_intN(imm.value, 12)) {
as_addi_d(rd, rj, imm.value);
as_sltui(scratch2, rd, imm.value);
ma_b(scratch2, scratch2, label,
cond == Assembler::CarrySet ? Assembler::NonZero : Assembler::Zero);
} else {
ma_li(scratch2, imm);
ma_addPtrTestCarry(cond, rd, rj, scratch2, label);
}
}
// Subtract.
void MacroAssemblerLOONG64::ma_sub_d(Register rd, Register rj, Imm32 imm) {
if (is_intN(-imm.value, 12)) {
as_addi_d(rd, rj, -imm.value);
} else {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, imm);
as_sub_d(rd, rj, scratch);
}
}
void MacroAssemblerLOONG64::ma_sub32TestOverflow(Register rd, Register rj,
Register rk, Label* overflow) {
ScratchRegisterScope scratch(asMasm());
as_sub_d(scratch, rj, rk);
as_sub_w(rd, rj, rk);
ma_b(rd, Register(scratch), overflow, Assembler::NotEqual);
}
void MacroAssemblerLOONG64::ma_subPtrTestOverflow(Register rd, Register rj,
Register rk,
Label* overflow) {
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT_IF(rj == rd, rj != rk);
MOZ_ASSERT(rj != scratch2);
MOZ_ASSERT(rk != scratch2);
MOZ_ASSERT(rd != scratch2);
Register rj_copy = rj;
if (rj == rd) {
as_or(scratch2, rj, zero);
rj_copy = scratch2;
}
{
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rd != scratch);
as_sub_d(rd, rj, rk);
// If the sign of rj and rk are the same, no overflow
as_xor(scratch, rj_copy, rk);
// Check if the sign of rd and rj are the same
as_xor(scratch2, rd, rj_copy);
as_and(scratch2, scratch2, scratch);
}
ma_b(scratch2, zero, overflow, Assembler::LessThan);
}
void MacroAssemblerLOONG64::ma_subPtrTestOverflow(Register rd, Register rj,
Imm32 imm, Label* overflow) {
// TODO(loong64): Check subPtrTestOverflow
MOZ_ASSERT(imm.value != INT32_MIN);
ma_addPtrTestOverflow(rd, rj, Imm32(-imm.value), overflow);
}
void MacroAssemblerLOONG64::ma_mul_d(Register rd, Register rj, Imm32 imm) {
// li handles the relocation.
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_mul_d(rd, rj, scratch);
}
void MacroAssemblerLOONG64::ma_mulh_d(Register rd, Register rj, Imm32 imm) {
// li handles the relocation.
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_mulh_d(rd, rj, scratch);
}
void MacroAssemblerLOONG64::ma_mulPtrTestOverflow(Register rd, Register rj,
Register rk,
Label* overflow) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT(rd != scratch);
if (rd == rj) {
as_or(scratch, rj, zero);
rj = scratch;
rk = (rd == rk) ? rj : rk;
} else if (rd == rk) {
as_or(scratch, rk, zero);
rk = scratch;
}
as_mul_d(rd, rj, rk);
as_mulh_d(scratch, rj, rk);
as_srai_d(scratch2, rd, 63);
ma_b(scratch, Register(scratch2), overflow, Assembler::NotEqual);
}
// Memory.
FaultingCodeOffset MacroAssemblerLOONG64::ma_load(
Register dest, Address address, LoadStoreSize size,
LoadStoreExtension extension) {
int32_t encodedOffset;
Register base;
FaultingCodeOffset fco;
// TODO: use as_ldx_b/h/w/d, could decrease as_add_d instr.
switch (size) {
case SizeByte:
case SizeHalfWord:
if (!is_intN(address.offset, 12)) {
ma_li(ScratchRegister, Imm32(address.offset));
as_add_d(ScratchRegister, address.base, ScratchRegister);
base = ScratchRegister;
encodedOffset = 0;
} else {
encodedOffset = address.offset;
base = address.base;
}
fco = FaultingCodeOffset(currentOffset());
if (size == SizeByte) {
if (ZeroExtend == extension) {
as_ld_bu(dest, base, encodedOffset);
} else {
as_ld_b(dest, base, encodedOffset);
}
} else {
if (ZeroExtend == extension) {
as_ld_hu(dest, base, encodedOffset);
} else {
as_ld_h(dest, base, encodedOffset);
}
}
break;
case SizeWord:
case SizeDouble:
if ((address.offset & 0x3) == 0 &&
(size == SizeDouble ||
(size == SizeWord && SignExtend == extension))) {
if (!Imm16::IsInSignedRange(address.offset)) {
ma_li(ScratchRegister, Imm32(address.offset));
as_add_d(ScratchRegister, address.base, ScratchRegister);
base = ScratchRegister;
encodedOffset = 0;
} else {
encodedOffset = address.offset;
base = address.base;
}
fco = FaultingCodeOffset(currentOffset());
if (size == SizeWord) {
as_ldptr_w(dest, base, encodedOffset);
} else {
as_ldptr_d(dest, base, encodedOffset);
}
} else {
if (!is_intN(address.offset, 12)) {
ma_li(ScratchRegister, Imm32(address.offset));
as_add_d(ScratchRegister, address.base, ScratchRegister);
base = ScratchRegister;
encodedOffset = 0;
} else {
encodedOffset = address.offset;
base = address.base;
}
fco = FaultingCodeOffset(currentOffset());
if (size == SizeWord) {
if (ZeroExtend == extension) {
as_ld_wu(dest, base, encodedOffset);
} else {
as_ld_w(dest, base, encodedOffset);
}
} else {
as_ld_d(dest, base, encodedOffset);
}
}
break;
default:
MOZ_CRASH("Invalid argument for ma_load");
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_store(
Register data, Address address, LoadStoreSize size,
LoadStoreExtension extension) {
int32_t encodedOffset;
Register base;
FaultingCodeOffset fco;
// TODO: use as_stx_b/h/w/d, could decrease as_add_d instr.
switch (size) {
case SizeByte:
case SizeHalfWord:
if (!is_intN(address.offset, 12)) {
ma_li(ScratchRegister, Imm32(address.offset));
as_add_d(ScratchRegister, address.base, ScratchRegister);
base = ScratchRegister;
encodedOffset = 0;
} else {
encodedOffset = address.offset;
base = address.base;
}
fco = FaultingCodeOffset(currentOffset());
if (size == SizeByte) {
as_st_b(data, base, encodedOffset);
} else {
as_st_h(data, base, encodedOffset);
}
break;
case SizeWord:
case SizeDouble:
if ((address.offset & 0x3) == 0) {
if (!Imm16::IsInSignedRange(address.offset)) {
ma_li(ScratchRegister, Imm32(address.offset));
as_add_d(ScratchRegister, address.base, ScratchRegister);
base = ScratchRegister;
encodedOffset = 0;
} else {
encodedOffset = address.offset;
base = address.base;
}
fco = FaultingCodeOffset(currentOffset());
if (size == SizeWord) {
as_stptr_w(data, base, encodedOffset);
} else {
as_stptr_d(data, base, encodedOffset);
}
} else {
if (!is_intN(address.offset, 12)) {
ma_li(ScratchRegister, Imm32(address.offset));
as_add_d(ScratchRegister, address.base, ScratchRegister);
base = ScratchRegister;
encodedOffset = 0;
} else {
encodedOffset = address.offset;
base = address.base;
}
fco = FaultingCodeOffset(currentOffset());
if (size == SizeWord) {
as_st_w(data, base, encodedOffset);
} else {
as_st_d(data, base, encodedOffset);
}
}
break;
default:
MOZ_CRASH("Invalid argument for ma_store");
}
return fco;
}
void MacroAssemblerLOONG64Compat::computeScaledAddress(const BaseIndex& address,
Register dest) {
Register base = address.base;
Register index = address.index;
int32_t shift = Imm32::ShiftOf(address.scale).value;
if (shift) {
MOZ_ASSERT(shift <= 4);
as_alsl_d(dest, index, base, shift - 1);
} else {
as_add_d(dest, base, index);
}
}
void MacroAssemblerLOONG64::ma_pop(Register r) {
MOZ_ASSERT(r != StackPointer);
as_ld_d(r, StackPointer, 0);
as_addi_d(StackPointer, StackPointer, sizeof(intptr_t));
}
void MacroAssemblerLOONG64::ma_push(Register r) {
if (r == StackPointer) {
ScratchRegisterScope scratch(asMasm());
as_or(scratch, r, zero);
as_addi_d(StackPointer, StackPointer, (int32_t) - sizeof(intptr_t));
as_st_d(scratch, StackPointer, 0);
} else {
as_addi_d(StackPointer, StackPointer, (int32_t) - sizeof(intptr_t));
as_st_d(r, StackPointer, 0);
}
}
// Branches when done from within loongarch-specific code.
void MacroAssemblerLOONG64::ma_b(Register lhs, ImmWord imm, Label* label,
Condition c, JumpKind jumpKind) {
if (imm.value <= INT32_MAX) {
ma_b(lhs, Imm32(uint32_t(imm.value)), label, c, jumpKind);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(lhs != scratch);
ma_li(scratch, imm);
ma_b(lhs, Register(scratch), label, c, jumpKind, scratch);
}
}
void MacroAssemblerLOONG64::ma_b(Register lhs, Address addr, Label* label,
Condition c, JumpKind jumpKind) {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(lhs != scratch);
ma_ld_d(scratch, addr);
ma_b(lhs, Register(scratch), label, c, jumpKind, scratch);
}
void MacroAssemblerLOONG64::ma_b(Address addr, Imm32 imm, Label* label,
Condition c, JumpKind jumpKind) {
SecondScratchRegisterScope scratch2(asMasm());
ma_ld_d(scratch2, addr);
ma_b(Register(scratch2), imm, label, c, jumpKind);
}
void MacroAssemblerLOONG64::ma_b(Address addr, ImmGCPtr imm, Label* label,
Condition c, JumpKind jumpKind) {
SecondScratchRegisterScope scratch2(asMasm());
ma_ld_d(scratch2, addr);
ma_b(Register(scratch2), imm, label, c, jumpKind);
}
void MacroAssemblerLOONG64::ma_bl(Label* label) {
spew("branch .Llabel %p\n", label);
if (label->bound()) {
// Generate the long jump for calls because return address has to be
// the address after the reserved block.
addLongJump(nextOffset(), BufferOffset(label->offset()));
ScratchRegisterScope scratch(asMasm());
ma_liPatchable(scratch, ImmWord(LabelBase::INVALID_OFFSET));
as_jirl(ra, scratch, BOffImm16(0));
return;
}
// Second word holds a pointer to the next branch in label's chain.
uint32_t nextInChain =
label->used() ? label->offset() : LabelBase::INVALID_OFFSET;
// Make the whole branch continous in the buffer. The '5'
// instructions are writing at below.
m_buffer.ensureSpace(5 * sizeof(uint32_t));
spew("bal .Llabel %p\n", label);
BufferOffset bo = writeInst(getBranchCode(BranchIsCall).encode());
writeInst(nextInChain);
if (!oom()) {
label->use(bo.getOffset());
}
// Leave space for long jump.
as_nop();
as_nop();
as_nop();
}
void MacroAssemblerLOONG64::branchWithCode(InstImm code, Label* label,
JumpKind jumpKind,
Register scratch) {
// simply output the pointer of one label as its id,
// notice that after one label destructor, the pointer will be reused.
spew("branch .Llabel %p", label);
MOZ_ASSERT(code.encode() !=
InstImm(op_jirl, BOffImm16(0), zero, ra).encode());
InstImm inst_beq = InstImm(op_beq, BOffImm16(0), zero, zero);
if (label->bound()) {
int32_t offset = label->offset() - m_buffer.nextOffset().getOffset();
if (BOffImm16::IsInRange(offset)) {
jumpKind = ShortJump;
}
// ShortJump
if (jumpKind == ShortJump) {
MOZ_ASSERT(BOffImm16::IsInRange(offset));
if (code.extractBitField(31, 26) == ((uint32_t)op_bcz >> 26)) {
code.setImm21(offset);
} else {
code.setBOffImm16(BOffImm16(offset));
}
#ifdef JS_JITSPEW
decodeBranchInstAndSpew(code);
#endif
writeInst(code.encode());
return;
}
// LongJump
if (code.encode() == inst_beq.encode()) {
// Handle long jump
addLongJump(nextOffset(), BufferOffset(label->offset()));
if (scratch == Register::Invalid()) {
ScratchRegisterScope scratch(asMasm());
ma_liPatchable(scratch, ImmWord(LabelBase::INVALID_OFFSET));
as_jirl(zero, scratch, BOffImm16(0)); // jr scratch
} else {
ma_liPatchable(scratch, ImmWord(LabelBase::INVALID_OFFSET));
as_jirl(zero, scratch, BOffImm16(0)); // jr scratch
}
as_nop();
return;
}
// OpenLongJump
// Handle long conditional branch, the target offset is based on self,
// point to next instruction of nop at below.
spew("invert branch .Llabel %p", label);
InstImm code_r = invertBranch(code, BOffImm16(5 * sizeof(uint32_t)));
#ifdef JS_JITSPEW
decodeBranchInstAndSpew(code_r);
#endif
writeInst(code_r.encode());
addLongJump(nextOffset(), BufferOffset(label->offset()));
if (scratch == Register::Invalid()) {
ScratchRegisterScope scratch(asMasm());
ma_liPatchable(scratch, ImmWord(LabelBase::INVALID_OFFSET));
as_jirl(zero, scratch, BOffImm16(0)); // jr scratch
} else {
ma_liPatchable(scratch, ImmWord(LabelBase::INVALID_OFFSET));
as_jirl(zero, scratch, BOffImm16(0)); // jr scratch
}
as_nop();
return;
}
// Generate open jump and link it to a label.
// Second word holds a pointer to the next branch in label's chain.
uint32_t nextInChain =
label->used() ? label->offset() : LabelBase::INVALID_OFFSET;
if (jumpKind == ShortJump) {
// Make the whole branch continous in the buffer.
m_buffer.ensureSpace(2 * sizeof(uint32_t));
// Indicate that this is short jump with offset 4.
code.setBOffImm16(BOffImm16(4));
#ifdef JS_JITSPEW
decodeBranchInstAndSpew(code);
#endif
BufferOffset bo = writeInst(code.encode());
writeInst(nextInChain);
if (!oom()) {
label->use(bo.getOffset());
}
return;
}
bool conditional = code.encode() != inst_beq.encode();
// Make the whole branch continous in the buffer. The '5'
// instructions are writing at below (contain conditional nop).
m_buffer.ensureSpace(5 * sizeof(uint32_t));
#ifdef JS_JITSPEW
decodeBranchInstAndSpew(code);
#endif
BufferOffset bo = writeInst(code.encode()); // invert
writeInst(nextInChain);
if (!oom()) {
label->use(bo.getOffset());
}
// Leave space for potential long jump.
as_nop();
as_nop();
if (conditional) {
as_nop();
}
}
void MacroAssemblerLOONG64::ma_cmp_set(Register rd, Register rj, ImmWord imm,
Condition c) {
if (imm.value <= INT32_MAX) {
ma_cmp_set(rd, rj, Imm32(uint32_t(imm.value)), c);
} else {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, imm);
ma_cmp_set(rd, rj, scratch, c);
}
}
void MacroAssemblerLOONG64::ma_cmp_set(Register rd, Register rj, ImmPtr imm,
Condition c) {
ma_cmp_set(rd, rj, ImmWord(uintptr_t(imm.value)), c);
}
void MacroAssemblerLOONG64::ma_cmp_set(Register rd, Address address, Imm32 imm,
Condition c) {
// TODO(loong64): 32-bit ma_cmp_set?
SecondScratchRegisterScope scratch2(asMasm());
ma_ld_w(scratch2, address);
ma_cmp_set(rd, Register(scratch2), imm, c);
}
void MacroAssemblerLOONG64::ma_cmp_set(Register rd, Address address,
ImmWord imm, Condition c) {
SecondScratchRegisterScope scratch2(asMasm());
ma_ld_d(scratch2, address);
ma_cmp_set(rd, Register(scratch2), imm, c);
}
// fp instructions
void MacroAssemblerLOONG64::ma_lid(FloatRegister dest, double value) {
ImmWord imm(mozilla::BitwiseCast<uint64_t>(value));
if (imm.value != 0) {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, imm);
moveToDouble(scratch, dest);
} else {
moveToDouble(zero, dest);
}
}
void MacroAssemblerLOONG64::ma_mv(FloatRegister src, ValueOperand dest) {
as_movfr2gr_d(dest.valueReg(), src);
}
void MacroAssemblerLOONG64::ma_mv(ValueOperand src, FloatRegister dest) {
as_movgr2fr_d(dest, src.valueReg());
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_fld_s(FloatRegister dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
js::wasm::FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_fld_s(dest, base, offset);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_fldx_s(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_fld_d(FloatRegister dest,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
js::wasm::FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_fld_d(dest, base, offset);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_fldx_d(dest, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_fst_s(FloatRegister src,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
js::wasm::FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_fst_s(src, base, offset);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_fstx_s(src, base, scratch);
}
return fco;
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_fst_d(FloatRegister src,
Address address) {
int32_t offset = address.offset;
Register base = address.base;
js::wasm::FaultingCodeOffset fco;
if (is_intN(offset, 12)) {
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_fst_d(src, base, offset);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(base != scratch);
ma_li(scratch, Imm32(offset));
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_fstx_d(src, base, scratch);
}
return fco;
}
void MacroAssemblerLOONG64::ma_pop(FloatRegister f) {
as_fld_d(f, StackPointer, 0);
as_addi_d(StackPointer, StackPointer, sizeof(double));
}
void MacroAssemblerLOONG64::ma_push(FloatRegister f) {
as_addi_d(StackPointer, StackPointer, (int32_t) - sizeof(double));
as_fst_d(f, StackPointer, 0);
}
void MacroAssemblerLOONG64::ma_li(Register dest, ImmGCPtr ptr) {
writeDataRelocation(ptr);
asMasm().ma_liPatchable(dest, ImmPtr(ptr.value));
}
void MacroAssemblerLOONG64::ma_li(Register dest, Imm32 imm) {
if (is_intN(imm.value, 12)) {
as_addi_w(dest, zero, imm.value);
} else if (is_uintN(imm.value, 12)) {
as_ori(dest, zero, imm.value & 0xfff);
} else {
as_lu12i_w(dest, imm.value >> 12 & 0xfffff);
if (imm.value & 0xfff) {
as_ori(dest, dest, imm.value & 0xfff);
}
}
}
// This method generates lu12i_w and ori instruction pair that can be modified
// by UpdateLuiOriValue, either during compilation (eg. Assembler::bind), or
// during execution (eg. jit::PatchJump).
void MacroAssemblerLOONG64::ma_liPatchable(Register dest, Imm32 imm) {
m_buffer.ensureSpace(2 * sizeof(uint32_t));
as_lu12i_w(dest, imm.value >> 12 & 0xfffff);
as_ori(dest, dest, imm.value & 0xfff);
}
void MacroAssemblerLOONG64::ma_fmovz(FloatFormat fmt, FloatRegister fd,
FloatRegister fj, Register rk) {
Label done;
ma_b(rk, zero, &done, Assembler::NotEqual);
if (fmt == SingleFloat) {
as_fmov_s(fd, fj);
} else {
as_fmov_d(fd, fj);
}
bind(&done);
}
void MacroAssemblerLOONG64::ma_fmovn(FloatFormat fmt, FloatRegister fd,
FloatRegister fj, Register rk) {
Label done;
ma_b(rk, zero, &done, Assembler::Equal);
if (fmt == SingleFloat) {
as_fmov_s(fd, fj);
} else {
as_fmov_d(fd, fj);
}
bind(&done);
}
void MacroAssemblerLOONG64::ma_and(Register rd, Register rj, Imm32 imm,
bool bit32) {
if (is_uintN(imm.value, 12)) {
as_andi(rd, rj, imm.value);
} else if (rd != rj) {
ma_li(rd, imm);
as_and(rd, rj, rd);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_and(rd, rj, scratch);
}
}
void MacroAssemblerLOONG64::ma_or(Register rd, Register rj, Imm32 imm,
bool bit32) {
if (is_uintN(imm.value, 12)) {
as_ori(rd, rj, imm.value);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_or(rd, rj, scratch);
}
}
void MacroAssemblerLOONG64::ma_xor(Register rd, Register rj, Imm32 imm,
bool bit32) {
if (is_uintN(imm.value, 12)) {
as_xori(rd, rj, imm.value);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_xor(rd, rj, scratch);
}
}
// Arithmetic-based ops.
// Add.
void MacroAssemblerLOONG64::ma_add_w(Register rd, Register rj, Imm32 imm) {
if (is_intN(imm.value, 12)) {
as_addi_w(rd, rj, imm.value);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_add_w(rd, rj, scratch);
}
}
void MacroAssemblerLOONG64::ma_add32TestCarry(Condition cond, Register rd,
Register rj, Register rk,
Label* overflow) {
MOZ_ASSERT(cond == Assembler::CarrySet || cond == Assembler::CarryClear);
MOZ_ASSERT_IF(rd == rj, rk != rd);
ScratchRegisterScope scratch(asMasm());
as_add_w(rd, rj, rk);
as_sltu(scratch, rd, rd == rj ? rk : rj);
ma_b(Register(scratch), Register(scratch), overflow,
cond == Assembler::CarrySet ? Assembler::NonZero : Assembler::Zero);
}
void MacroAssemblerLOONG64::ma_add32TestCarry(Condition cond, Register rd,
Register rj, Imm32 imm,
Label* overflow) {
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT(rj != scratch2);
ma_li(scratch2, imm);
ma_add32TestCarry(cond, rd, rj, scratch2, overflow);
}
// Subtract.
void MacroAssemblerLOONG64::ma_sub_w(Register rd, Register rj, Imm32 imm) {
if (is_intN(-imm.value, 12)) {
as_addi_w(rd, rj, -imm.value);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_sub_w(rd, rj, scratch);
}
}
void MacroAssemblerLOONG64::ma_sub_w(Register rd, Register rj, Register rk) {
as_sub_w(rd, rj, rk);
}
void MacroAssemblerLOONG64::ma_sub32TestOverflow(Register rd, Register rj,
Imm32 imm, Label* overflow) {
if (imm.value != INT32_MIN) {
asMasm().ma_add32TestOverflow(rd, rj, Imm32(-imm.value), overflow);
} else {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, Imm32(imm.value));
asMasm().ma_sub32TestOverflow(rd, rj, scratch, overflow);
}
}
void MacroAssemblerLOONG64::ma_mul(Register rd, Register rj, Imm32 imm) {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(rj != scratch);
ma_li(scratch, imm);
as_mul_w(rd, rj, scratch);
}
void MacroAssemblerLOONG64::ma_mul32TestOverflow(Register rd, Register rj,
Register rk, Label* overflow) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
as_mulh_w(scratch, rj, rk);
as_mul_w(rd, rj, rk);
as_srai_w(scratch2, rd, 31);
ma_b(scratch, Register(scratch2), overflow, Assembler::NotEqual);
}
void MacroAssemblerLOONG64::ma_mul32TestOverflow(Register rd, Register rj,
Imm32 imm, Label* overflow) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_li(scratch, imm);
as_mulh_w(scratch2, rj, scratch);
as_mul_w(rd, rj, scratch);
as_srai_w(scratch, rd, 31);
ma_b(scratch, Register(scratch2), overflow, Assembler::NotEqual);
}
void MacroAssemblerLOONG64::ma_div_branch_overflow(Register rd, Register rj,
Register rk,
Label* overflow) {
ScratchRegisterScope scratch(asMasm());
as_mod_w(scratch, rj, rk);
ma_b(scratch, scratch, overflow, Assembler::NonZero);
as_div_w(rd, rj, rk);
}
void MacroAssemblerLOONG64::ma_div_branch_overflow(Register rd, Register rj,
Imm32 imm, Label* overflow) {
SecondScratchRegisterScope scratch2(asMasm());
ma_li(scratch2, imm);
ma_div_branch_overflow(rd, rj, scratch2, overflow);
}
void MacroAssemblerLOONG64::ma_mod_mask(Register src, Register dest,
Register hold, Register remain,
int32_t shift, Label* negZero) {
// MATH:
// We wish to compute x % (1<<y) - 1 for a known constant, y.
// First, let b = (1<<y) and C = (1<<y)-1, then think of the 32 bit
// dividend as a number in base b, namely
// c_0*1 + c_1*b + c_2*b^2 ... c_n*b^n
// now, since both addition and multiplication commute with modulus,
// x % C == (c_0 + c_1*b + ... + c_n*b^n) % C ==
// (c_0 % C) + (c_1%C) * (b % C) + (c_2 % C) * (b^2 % C)...
// now, since b == C + 1, b % C == 1, and b^n % C == 1
// this means that the whole thing simplifies to:
// c_0 + c_1 + c_2 ... c_n % C
// each c_n can easily be computed by a shift/bitextract, and the modulus
// can be maintained by simply subtracting by C whenever the number gets
// over C.
int32_t mask = (1 << shift) - 1;
Label head, negative, sumSigned, done;
// hold holds -1 if the value was negative, 1 otherwise.
// remain holds the remaining bits that have not been processed
// SecondScratchReg serves as a temporary location to store extracted bits
// into as well as holding the trial subtraction as a temp value dest is
// the accumulator (and holds the final result)
// move the whole value into the remain.
as_or(remain, src, zero);
// Zero out the dest.
ma_li(dest, Imm32(0));
// Set the hold appropriately.
ma_b(remain, remain, &negative, Signed, ShortJump);
ma_li(hold, Imm32(1));
ma_b(&head, ShortJump);
bind(&negative);
ma_li(hold, Imm32(-1));
as_sub_w(remain, zero, remain);
// Begin the main loop.
bind(&head);
SecondScratchRegisterScope scratch2(asMasm());
// Extract the bottom bits into SecondScratchReg.
ma_and(scratch2, remain, Imm32(mask));
// Add those bits to the accumulator.
as_add_w(dest, dest, scratch2);
// Do a trial subtraction
ma_sub_w(scratch2, dest, Imm32(mask));
// If (sum - C) > 0, store sum - C back into sum, thus performing a
// modulus.
ma_b(scratch2, Register(scratch2), &sumSigned, Signed, ShortJump);
as_or(dest, scratch2, zero);
bind(&sumSigned);
// Get rid of the bits that we extracted before.
as_srli_w(remain, remain, shift);
// If the shift produced zero, finish, otherwise, continue in the loop.
ma_b(remain, remain, &head, NonZero, ShortJump);
// Check the hold to see if we need to negate the result.
ma_b(hold, hold, &done, NotSigned, ShortJump);
// If the hold was non-zero, negate the result to be in line with
// what JS wants
if (negZero != nullptr) {
// Jump out in case of negative zero.
ma_b(hold, hold, negZero, Zero);
as_sub_w(dest, zero, dest);
} else {
as_sub_w(dest, zero, dest);
}
bind(&done);
}
// Memory.
FaultingCodeOffset MacroAssemblerLOONG64::ma_load(
Register dest, const BaseIndex& src, LoadStoreSize size,
LoadStoreExtension extension) {
SecondScratchRegisterScope scratch2(asMasm());
asMasm().computeScaledAddress(src, scratch2);
return asMasm().ma_load(dest, Address(scratch2, src.offset), size, extension);
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_store(
Register data, const BaseIndex& dest, LoadStoreSize size,
LoadStoreExtension extension) {
SecondScratchRegisterScope scratch2(asMasm());
asMasm().computeScaledAddress(dest, scratch2);
return asMasm().ma_store(data, Address(scratch2, dest.offset), size,
extension);
}
void MacroAssemblerLOONG64::ma_store(Imm32 imm, const BaseIndex& dest,
LoadStoreSize size,
LoadStoreExtension extension) {
SecondScratchRegisterScope scratch2(asMasm());
// Make sure that scratch2 contains absolute address so that offset is 0.
asMasm().computeEffectiveAddress(dest, scratch2);
ScratchRegisterScope scratch(asMasm());
// Scrach register is free now, use it for loading imm value
ma_li(scratch, imm);
// with offset=0 ScratchRegister will not be used in ma_store()
// so we can use it as a parameter here
asMasm().ma_store(scratch, Address(scratch2, 0), size, extension);
}
// Branches when done from within loongarch-specific code.
// TODO(loong64) Optimize ma_b
void MacroAssemblerLOONG64::ma_b(Register lhs, Register rhs, Label* label,
Condition c, JumpKind jumpKind,
Register scratch) {
switch (c) {
case Equal:
case NotEqual:
asMasm().branchWithCode(getBranchCode(lhs, rhs, c), label, jumpKind,
scratch);
break;
case Always:
ma_b(label, jumpKind);
break;
case Zero:
case NonZero:
case Signed:
case NotSigned:
MOZ_ASSERT(lhs == rhs);
asMasm().branchWithCode(getBranchCode(lhs, c), label, jumpKind, scratch);
break;
default: {
Condition cond = ma_cmp(ScratchRegister, lhs, rhs, c);
asMasm().branchWithCode(getBranchCode(ScratchRegister, cond), label,
jumpKind, scratch);
break;
}
}
}
void MacroAssemblerLOONG64::ma_b(Register lhs, Imm32 imm, Label* label,
Condition c, JumpKind jumpKind) {
MOZ_ASSERT(c != Overflow);
if (imm.value == 0) {
if (c == Always || c == AboveOrEqual) {
ma_b(label, jumpKind);
} else if (c == Below) {
; // This condition is always false. No branch required.
} else {
asMasm().branchWithCode(getBranchCode(lhs, c), label, jumpKind);
}
} else {
switch (c) {
case Equal:
case NotEqual:
MOZ_ASSERT(lhs != ScratchRegister);
ma_li(ScratchRegister, imm);
ma_b(lhs, ScratchRegister, label, c, jumpKind);
break;
default:
Condition cond = ma_cmp(ScratchRegister, lhs, imm, c);
asMasm().branchWithCode(getBranchCode(ScratchRegister, cond), label,
jumpKind);
}
}
}
void MacroAssemblerLOONG64::ma_b(Register lhs, ImmPtr imm, Label* l,
Condition c, JumpKind jumpKind) {
asMasm().ma_b(lhs, ImmWord(uintptr_t(imm.value)), l, c, jumpKind);
}
void MacroAssemblerLOONG64::ma_b(Label* label, JumpKind jumpKind) {
asMasm().branchWithCode(getBranchCode(BranchIsJump), label, jumpKind);
}
Assembler::Condition MacroAssemblerLOONG64::ma_cmp(Register dest, Register lhs,
Register rhs, Condition c) {
switch (c) {
case Above:
// bgtu s,t,label =>
// sltu at,t,s
// bne at,$zero,offs
as_sltu(dest, rhs, lhs);
return NotEqual;
case AboveOrEqual:
// bgeu s,t,label =>
// sltu at,s,t
// beq at,$zero,offs
as_sltu(dest, lhs, rhs);
return Equal;
case Below:
// bltu s,t,label =>
// sltu at,s,t
// bne at,$zero,offs
as_sltu(dest, lhs, rhs);
return NotEqual;
case BelowOrEqual:
// bleu s,t,label =>
// sltu at,t,s
// beq at,$zero,offs
as_sltu(dest, rhs, lhs);
return Equal;
case GreaterThan:
// bgt s,t,label =>
// slt at,t,s
// bne at,$zero,offs
as_slt(dest, rhs, lhs);
return NotEqual;
case GreaterThanOrEqual:
// bge s,t,label =>
// slt at,s,t
// beq at,$zero,offs
as_slt(dest, lhs, rhs);
return Equal;
case LessThan:
// blt s,t,label =>
// slt at,s,t
// bne at,$zero,offs
as_slt(dest, lhs, rhs);
return NotEqual;
case LessThanOrEqual:
// ble s,t,label =>
// slt at,t,s
// beq at,$zero,offs
as_slt(dest, rhs, lhs);
return Equal;
default:
MOZ_CRASH("Invalid condition.");
}
return Always;
}
Assembler::Condition MacroAssemblerLOONG64::ma_cmp(Register dest, Register lhs,
Imm32 imm, Condition c) {
ScratchRegisterScope scratch(asMasm());
MOZ_RELEASE_ASSERT(lhs != scratch);
switch (c) {
case Above:
case BelowOrEqual:
if (imm.value != 0x7fffffff && is_intN(imm.value + 1, 12) &&
imm.value != -1) {
// lhs <= rhs via lhs < rhs + 1 if rhs + 1 does not overflow
as_sltui(dest, lhs, imm.value + 1);
return (c == BelowOrEqual ? NotEqual : Equal);
} else {
ma_li(scratch, imm);
as_sltu(dest, scratch, lhs);
return (c == BelowOrEqual ? Equal : NotEqual);
}
case AboveOrEqual:
case Below:
if (is_intN(imm.value, 12)) {
as_sltui(dest, lhs, imm.value);
} else {
ma_li(scratch, imm);
as_sltu(dest, lhs, scratch);
}
return (c == AboveOrEqual ? Equal : NotEqual);
case GreaterThan:
case LessThanOrEqual:
if (imm.value != 0x7fffffff && is_intN(imm.value + 1, 12)) {
// lhs <= rhs via lhs < rhs + 1.
as_slti(dest, lhs, imm.value + 1);
return (c == LessThanOrEqual ? NotEqual : Equal);
} else {
ma_li(scratch, imm);
as_slt(dest, scratch, lhs);
return (c == LessThanOrEqual ? Equal : NotEqual);
}
case GreaterThanOrEqual:
case LessThan:
if (is_intN(imm.value, 12)) {
as_slti(dest, lhs, imm.value);
} else {
ma_li(scratch, imm);
as_slt(dest, lhs, scratch);
}
return (c == GreaterThanOrEqual ? Equal : NotEqual);
default:
MOZ_CRASH("Invalid condition.");
}
return Always;
}
// fp instructions
void MacroAssemblerLOONG64::ma_lis(FloatRegister dest, float value) {
Imm32 imm(mozilla::BitwiseCast<uint32_t>(value));
if (imm.value != 0) {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, imm);
moveToFloat32(scratch, dest);
} else {
moveToFloat32(zero, dest);
}
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_fst_d(FloatRegister ft,
BaseIndex address) {
SecondScratchRegisterScope scratch2(asMasm());
asMasm().computeScaledAddress(address, scratch2);
return asMasm().ma_fst_d(ft, Address(scratch2, address.offset));
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_fst_s(FloatRegister ft,
BaseIndex address) {
SecondScratchRegisterScope scratch2(asMasm());
asMasm().computeScaledAddress(address, scratch2);
return asMasm().ma_fst_s(ft, Address(scratch2, address.offset));
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_fld_d(FloatRegister ft,
const BaseIndex& src) {
SecondScratchRegisterScope scratch2(asMasm());
asMasm().computeScaledAddress(src, scratch2);
return asMasm().ma_fld_d(ft, Address(scratch2, src.offset));
}
FaultingCodeOffset MacroAssemblerLOONG64::ma_fld_s(FloatRegister ft,
const BaseIndex& src) {
SecondScratchRegisterScope scratch2(asMasm());
asMasm().computeScaledAddress(src, scratch2);
return asMasm().ma_fld_s(ft, Address(scratch2, src.offset));
}
void MacroAssemblerLOONG64::ma_bc_s(FloatRegister lhs, FloatRegister rhs,
Label* label, DoubleCondition c,
JumpKind jumpKind, FPConditionBit fcc) {
compareFloatingPoint(SingleFloat, lhs, rhs, c, fcc);
asMasm().branchWithCode(getBranchCode(fcc), label, jumpKind);
}
void MacroAssemblerLOONG64::ma_bc_d(FloatRegister lhs, FloatRegister rhs,
Label* label, DoubleCondition c,
JumpKind jumpKind, FPConditionBit fcc) {
compareFloatingPoint(DoubleFloat, lhs, rhs, c, fcc);
asMasm().branchWithCode(getBranchCode(fcc), label, jumpKind);
}
void MacroAssemblerLOONG64::ma_call(ImmPtr dest) {
asMasm().ma_liPatchable(CallReg, dest);
as_jirl(ra, CallReg, BOffImm16(0));
}
void MacroAssemblerLOONG64::ma_jump(ImmPtr dest) {
ScratchRegisterScope scratch(asMasm());
asMasm().ma_liPatchable(scratch, dest);
as_jirl(zero, scratch, BOffImm16(0));
}
void MacroAssemblerLOONG64::ma_cmp_set(Register rd, Register rj, Register rk,
Condition c) {
switch (c) {
case Equal:
// seq d,s,t =>
// xor d,s,t
// sltiu d,d,1
as_xor(rd, rj, rk);
as_sltui(rd, rd, 1);
break;
case NotEqual:
// sne d,s,t =>
// xor d,s,t
// sltu d,$zero,d
as_xor(rd, rj, rk);
as_sltu(rd, zero, rd);
break;
case Above:
// sgtu d,s,t =>
// sltu d,t,s
as_sltu(rd, rk, rj);
break;
case AboveOrEqual:
// sgeu d,s,t =>
// sltu d,s,t
// xori d,d,1
as_sltu(rd, rj, rk);
as_xori(rd, rd, 1);
break;
case Below:
// sltu d,s,t
as_sltu(rd, rj, rk);
break;
case BelowOrEqual:
// sleu d,s,t =>
// sltu d,t,s
// xori d,d,1
as_sltu(rd, rk, rj);
as_xori(rd, rd, 1);
break;
case GreaterThan:
// sgt d,s,t =>
// slt d,t,s
as_slt(rd, rk, rj);
break;
case GreaterThanOrEqual:
// sge d,s,t =>
// slt d,s,t
// xori d,d,1
as_slt(rd, rj, rk);
as_xori(rd, rd, 1);
break;
case LessThan:
// slt d,s,t
as_slt(rd, rj, rk);
break;
case LessThanOrEqual:
// sle d,s,t =>
// slt d,t,s
// xori d,d,1
as_slt(rd, rk, rj);
as_xori(rd, rd, 1);
break;
case Zero:
MOZ_ASSERT(rj == rk);
// seq d,s,$zero =>
// sltiu d,s,1
as_sltui(rd, rj, 1);
break;
case NonZero:
MOZ_ASSERT(rj == rk);
// sne d,s,$zero =>
// sltu d,$zero,s
as_sltu(rd, zero, rj);
break;
case Signed:
MOZ_ASSERT(rj == rk);
as_slt(rd, rj, zero);
break;
case NotSigned:
MOZ_ASSERT(rj == rk);
// sge d,s,$zero =>
// slt d,s,$zero
// xori d,d,1
as_slt(rd, rj, zero);
as_xori(rd, rd, 1);
break;
default:
MOZ_CRASH("Invalid condition.");
}
}
void MacroAssemblerLOONG64::ma_cmp_set_double(Register dest, FloatRegister lhs,
FloatRegister rhs,
DoubleCondition c) {
compareFloatingPoint(DoubleFloat, lhs, rhs, c);
as_movcf2gr(dest, FCC0);
}
void MacroAssemblerLOONG64::ma_cmp_set_float32(Register dest, FloatRegister lhs,
FloatRegister rhs,
DoubleCondition c) {
compareFloatingPoint(SingleFloat, lhs, rhs, c);
as_movcf2gr(dest, FCC0);
}
void MacroAssemblerLOONG64::ma_cmp_set(Register rd, Register rj, Imm32 imm,
Condition c) {
if (imm.value == 0) {
switch (c) {
case Equal:
case BelowOrEqual:
as_sltui(rd, rj, 1);
break;
case NotEqual:
case Above:
as_sltu(rd, zero, rj);
break;
case AboveOrEqual:
case Below:
as_ori(rd, zero, c == AboveOrEqual ? 1 : 0);
break;
case GreaterThan:
case LessThanOrEqual:
as_slt(rd, zero, rj);
if (c == LessThanOrEqual) {
as_xori(rd, rd, 1);
}
break;
case LessThan:
case GreaterThanOrEqual:
as_slt(rd, rj, zero);
if (c == GreaterThanOrEqual) {
as_xori(rd, rd, 1);
}
break;
case Zero:
as_sltui(rd, rj, 1);
break;
case NonZero:
as_sltu(rd, zero, rj);
break;
case Signed:
as_slt(rd, rj, zero);
break;
case NotSigned:
as_slt(rd, rj, zero);
as_xori(rd, rd, 1);
break;
default:
MOZ_CRASH("Invalid condition.");
}
return;
}
switch (c) {
case Equal:
case NotEqual:
ma_xor(rd, rj, imm);
if (c == Equal) {
as_sltui(rd, rd, 1);
} else {
as_sltu(rd, zero, rd);
}
break;
case Zero:
case NonZero:
case Signed:
case NotSigned:
MOZ_CRASH("Invalid condition.");
default:
Condition cond = ma_cmp(rd, rj, imm, c);
MOZ_ASSERT(cond == Equal || cond == NotEqual);
if (cond == Equal) as_xori(rd, rd, 1);
}
}
void MacroAssemblerLOONG64::compareFloatingPoint(FloatFormat fmt,
FloatRegister lhs,
FloatRegister rhs,
DoubleCondition c,
FPConditionBit fcc) {
switch (c) {
case DoubleOrdered:
as_fcmp_cor(fmt, lhs, rhs, fcc);
break;
case DoubleEqual:
as_fcmp_ceq(fmt, lhs, rhs, fcc);
break;
case DoubleNotEqual:
as_fcmp_cne(fmt, lhs, rhs, fcc);
break;
case DoubleGreaterThan:
as_fcmp_clt(fmt, rhs, lhs, fcc);
break;
case DoubleGreaterThanOrEqual:
as_fcmp_cle(fmt, rhs, lhs, fcc);
break;
case DoubleLessThan:
as_fcmp_clt(fmt, lhs, rhs, fcc);
break;
case DoubleLessThanOrEqual:
as_fcmp_cle(fmt, lhs, rhs, fcc);
break;
case DoubleUnordered:
as_fcmp_cun(fmt, lhs, rhs, fcc);
break;
case DoubleEqualOrUnordered:
as_fcmp_cueq(fmt, lhs, rhs, fcc);
break;
case DoubleNotEqualOrUnordered:
as_fcmp_cune(fmt, lhs, rhs, fcc);
break;
case DoubleGreaterThanOrUnordered:
as_fcmp_cult(fmt, rhs, lhs, fcc);
break;
case DoubleGreaterThanOrEqualOrUnordered:
as_fcmp_cule(fmt, rhs, lhs, fcc);
break;
case DoubleLessThanOrUnordered:
as_fcmp_cult(fmt, lhs, rhs, fcc);
break;
case DoubleLessThanOrEqualOrUnordered:
as_fcmp_cule(fmt, lhs, rhs, fcc);
break;
default:
MOZ_CRASH("Invalid DoubleCondition.");
}
}
void MacroAssemblerLOONG64::minMaxDouble(FloatRegister srcDest,
FloatRegister second, bool handleNaN,
bool isMax) {
if (srcDest == second) return;
Label nan, done;
// First or second is NaN, result is NaN.
ma_bc_d(srcDest, second, &nan, Assembler::DoubleUnordered, ShortJump);
if (isMax) {
as_fmax_d(srcDest, srcDest, second);
} else {
as_fmin_d(srcDest, srcDest, second);
}
ma_b(&done, ShortJump);
bind(&nan);
as_fadd_d(srcDest, srcDest, second);
bind(&done);
}
void MacroAssemblerLOONG64::minMaxFloat32(FloatRegister srcDest,
FloatRegister second, bool handleNaN,
bool isMax) {
if (srcDest == second) return;
Label nan, done;
// First or second is NaN, result is NaN.
ma_bc_s(srcDest, second, &nan, Assembler::DoubleUnordered, ShortJump);
if (isMax) {
as_fmax_s(srcDest, srcDest, second);
} else {
as_fmin_s(srcDest, srcDest, second);
}
ma_b(&done, ShortJump);
bind(&nan);
as_fadd_s(srcDest, srcDest, second);
bind(&done);
}
FaultingCodeOffset MacroAssemblerLOONG64::loadDouble(const Address& address,
FloatRegister dest) {
return asMasm().ma_fld_d(dest, address);
}
FaultingCodeOffset MacroAssemblerLOONG64::loadDouble(const BaseIndex& src,
FloatRegister dest) {
return asMasm().ma_fld_d(dest, src);
}
void MacroAssemblerLOONG64::loadFloatAsDouble(const Address& address,
FloatRegister dest) {
asMasm().ma_fld_s(dest, address);
as_fcvt_d_s(dest, dest);
}
void MacroAssemblerLOONG64::loadFloatAsDouble(const BaseIndex& src,
FloatRegister dest) {
asMasm().loadFloat32(src, dest);
as_fcvt_d_s(dest, dest);
}
FaultingCodeOffset MacroAssemblerLOONG64::loadFloat32(const Address& address,
FloatRegister dest) {
return asMasm().ma_fld_s(dest, address);
}
FaultingCodeOffset MacroAssemblerLOONG64::loadFloat32(const BaseIndex& src,
FloatRegister dest) {
return asMasm().ma_fld_s(dest, src);
}
void MacroAssemblerLOONG64::wasmLoadImpl(const wasm::MemoryAccessDesc& access,
Register memoryBase, Register ptr,
Register ptrScratch,
AnyRegister output, Register tmp) {
access.assertOffsetInGuardPages();
uint32_t offset = access.offset();
MOZ_ASSERT_IF(offset, ptrScratch != InvalidReg);
// Maybe add the offset.
if (offset) {
asMasm().addPtr(ImmWord(offset), ptrScratch);
ptr = ptrScratch;
}
asMasm().memoryBarrierBefore(access.sync());
append(access, wasm::TrapMachineInsnForLoad(byteSize(access.type())),
FaultingCodeOffset(currentOffset()));
switch (access.type()) {
case Scalar::Int8:
as_ldx_b(output.gpr(), memoryBase, ptr);
break;
case Scalar::Uint8:
as_ldx_bu(output.gpr(), memoryBase, ptr);
break;
case Scalar::Int16:
as_ldx_h(output.gpr(), memoryBase, ptr);
break;
case Scalar::Uint16:
as_ldx_hu(output.gpr(), memoryBase, ptr);
break;
case Scalar::Int32:
case Scalar::Uint32:
as_ldx_w(output.gpr(), memoryBase, ptr);
break;
case Scalar::Float64:
as_fldx_d(output.fpu(), memoryBase, ptr);
break;
case Scalar::Float32:
as_fldx_s(output.fpu(), memoryBase, ptr);
break;
default:
MOZ_CRASH("unexpected array type");
}
asMasm().memoryBarrierAfter(access.sync());
}
void MacroAssemblerLOONG64::wasmStoreImpl(const wasm::MemoryAccessDesc& access,
AnyRegister value,
Register memoryBase, Register ptr,
Register ptrScratch, Register tmp) {
access.assertOffsetInGuardPages();
uint32_t offset = access.offset();
MOZ_ASSERT_IF(offset, ptrScratch != InvalidReg);
// Maybe add the offset.
if (offset) {
asMasm().addPtr(ImmWord(offset), ptrScratch);
ptr = ptrScratch;
}
asMasm().memoryBarrierBefore(access.sync());
// The next emitted instruction is a memory access.
append(access, wasm::TrapMachineInsnForStore(byteSize(access.type())),
FaultingCodeOffset(currentOffset()));
switch (access.type()) {
case Scalar::Int8:
case Scalar::Uint8:
as_stx_b(value.gpr(), memoryBase, ptr);
break;
case Scalar::Int16:
case Scalar::Uint16:
as_stx_h(value.gpr(), memoryBase, ptr);
break;
case Scalar::Int32:
case Scalar::Uint32:
as_stx_w(value.gpr(), memoryBase, ptr);
break;
case Scalar::Int64:
as_stx_d(value.gpr(), memoryBase, ptr);
break;
case Scalar::Float64:
as_fstx_d(value.fpu(), memoryBase, ptr);
break;
case Scalar::Float32:
as_fstx_s(value.fpu(), memoryBase, ptr);
break;
default:
MOZ_CRASH("unexpected array type");
}
asMasm().memoryBarrierAfter(access.sync());
}
void MacroAssemblerLOONG64Compat::wasmLoadI64Impl(
const wasm::MemoryAccessDesc& access, Register memoryBase, Register ptr,
Register ptrScratch, Register64 output, Register tmp) {
uint32_t offset = access.offset();
MOZ_ASSERT_IF(offset, ptrScratch != InvalidReg);
// Maybe add the offset.
if (offset) {
asMasm().addPtr(ImmWord(offset), ptrScratch);
ptr = ptrScratch;
}
asMasm().memoryBarrierBefore(access.sync());
append(access, wasm::TrapMachineInsnForLoad(byteSize(access.type())),
FaultingCodeOffset(currentOffset()));
switch (access.type()) {
case Scalar::Int8:
as_ldx_b(output.reg, memoryBase, ptr);
break;
case Scalar::Uint8:
as_ldx_bu(output.reg, memoryBase, ptr);
break;
case Scalar::Int16:
as_ldx_h(output.reg, memoryBase, ptr);
break;
case Scalar::Uint16:
as_ldx_hu(output.reg, memoryBase, ptr);
break;
case Scalar::Int32:
as_ldx_w(output.reg, memoryBase, ptr);
break;
case Scalar::Uint32:
// TODO(loong64): Why need zero-extension here?
as_ldx_wu(output.reg, memoryBase, ptr);
break;
case Scalar::Int64:
as_ldx_d(output.reg, memoryBase, ptr);
break;
default:
MOZ_CRASH("unexpected array type");
}
asMasm().memoryBarrierAfter(access.sync());
}
void MacroAssemblerLOONG64Compat::wasmStoreI64Impl(
const wasm::MemoryAccessDesc& access, Register64 value, Register memoryBase,
Register ptr, Register ptrScratch, Register tmp) {
uint32_t offset = access.offset();
MOZ_ASSERT_IF(offset, ptrScratch != InvalidReg);
// Maybe add the offset.
if (offset) {
asMasm().addPtr(ImmWord(offset), ptrScratch);
ptr = ptrScratch;
}
asMasm().memoryBarrierBefore(access.sync());
append(access, wasm::TrapMachineInsnForStore(byteSize(access.type())),
FaultingCodeOffset(currentOffset()));
switch (access.type()) {
case Scalar::Int8:
case Scalar::Uint8:
as_stx_b(value.reg, memoryBase, ptr);
break;
case Scalar::Int16:
case Scalar::Uint16:
as_stx_h(value.reg, memoryBase, ptr);
break;
case Scalar::Int32:
case Scalar::Uint32:
as_stx_w(value.reg, memoryBase, ptr);
break;
case Scalar::Int64:
as_stx_d(value.reg, memoryBase, ptr);
break;
default:
MOZ_CRASH("unexpected array type");
}
asMasm().memoryBarrierAfter(access.sync());
}
void MacroAssemblerLOONG64::outOfLineWasmTruncateToInt32Check(
FloatRegister input, Register output, MIRType fromType, TruncFlags flags,
Label* rejoin, wasm::BytecodeOffset trapOffset) {
bool isUnsigned = flags & TRUNC_UNSIGNED;
bool isSaturating = flags & TRUNC_SATURATING;
if (isSaturating) {
ScratchDoubleScope fpscratch(asMasm());
if (fromType == MIRType::Double) {
asMasm().loadConstantDouble(0.0, fpscratch);
} else {
asMasm().loadConstantFloat32(0.0f, fpscratch);
}
if (isUnsigned) {
ma_li(output, Imm32(UINT32_MAX));
compareFloatingPoint(
fromType == MIRType::Double ? DoubleFloat : SingleFloat, input,
fpscratch, Assembler::DoubleLessThanOrUnordered);
ScratchRegisterScope scratch(asMasm());
as_movcf2gr(scratch, FCC0);
// FCC0 = 1, output = zero; else not change.
as_masknez(output, output, scratch);
} else {
// Positive overflow is already saturated to INT32_MAX, so we only have
// to handle NaN and negative overflow here.
compareFloatingPoint(
fromType == MIRType::Double ? DoubleFloat : SingleFloat, input, input,
Assembler::DoubleLessThanOrUnordered);
ScratchRegisterScope scratch(asMasm());
as_movcf2gr(scratch, FCC0);
// FCC0 = 1, output = zero; else not change.
as_masknez(output, output, scratch);
compareFloatingPoint(
fromType == MIRType::Double ? DoubleFloat : SingleFloat, input,
fpscratch, Assembler::DoubleLessThan);
as_movcf2gr(scratch, FCC0);
// FCC0 == 1, move INT32_MIN to output; else not change.
as_slli_w(scratch, scratch, 31);
as_or(output, output, scratch);
}
MOZ_ASSERT(rejoin->bound());
asMasm().jump(rejoin);
return;
}
Label inputIsNaN;
if (fromType == MIRType::Double) {
asMasm().branchDouble(Assembler::DoubleUnordered, input, input,
&inputIsNaN);
} else if (fromType == MIRType::Float32) {
asMasm().branchFloat(Assembler::DoubleUnordered, input, input, &inputIsNaN);
}
asMasm().wasmTrap(wasm::Trap::IntegerOverflow, trapOffset);
asMasm().bind(&inputIsNaN);
asMasm().wasmTrap(wasm::Trap::InvalidConversionToInteger, trapOffset);
}
void MacroAssemblerLOONG64::outOfLineWasmTruncateToInt64Check(
FloatRegister input, Register64 output_, MIRType fromType, TruncFlags flags,
Label* rejoin, wasm::BytecodeOffset trapOffset) {
bool isUnsigned = flags & TRUNC_UNSIGNED;
bool isSaturating = flags & TRUNC_SATURATING;
if (isSaturating) {
ScratchDoubleScope fpscratch(asMasm());
Register output = output_.reg;
if (fromType == MIRType::Double) {
asMasm().loadConstantDouble(0.0, fpscratch);
} else {
asMasm().loadConstantFloat32(0.0f, fpscratch);
}
if (isUnsigned) {
asMasm().ma_li(output, ImmWord(UINT64_MAX));
compareFloatingPoint(
fromType == MIRType::Double ? DoubleFloat : SingleFloat, input,
fpscratch, Assembler::DoubleLessThanOrUnordered);
ScratchRegisterScope scratch(asMasm());
as_movcf2gr(scratch, FCC0);
// FCC0 = 1, output = zero; else not change.
as_masknez(output, output, scratch);
} else {
// Positive overflow is already saturated to INT64_MAX, so we only have
// to handle NaN and negative overflow here.
compareFloatingPoint(
fromType == MIRType::Double ? DoubleFloat : SingleFloat, input, input,
Assembler::DoubleLessThanOrUnordered);
ScratchRegisterScope scratch(asMasm());
as_movcf2gr(scratch, FCC0);
// FCC0 = 1, output = zero; else not change.
as_masknez(output, output, scratch);
compareFloatingPoint(
fromType == MIRType::Double ? DoubleFloat : SingleFloat, input,
fpscratch, Assembler::DoubleLessThan);
as_movcf2gr(scratch, FCC0);
// FCC0 == 1, move INT64_MIN to output; else not change.
as_slli_d(scratch, scratch, 63);
as_or(output, output, scratch);
}
MOZ_ASSERT(rejoin->bound());
asMasm().jump(rejoin);
return;
}
Label inputIsNaN;
if (fromType == MIRType::Double) {
asMasm().branchDouble(Assembler::DoubleUnordered, input, input,
&inputIsNaN);
} else if (fromType == MIRType::Float32) {
asMasm().branchFloat(Assembler::DoubleUnordered, input, input, &inputIsNaN);
}
asMasm().wasmTrap(wasm::Trap::IntegerOverflow, trapOffset);
asMasm().bind(&inputIsNaN);
asMasm().wasmTrap(wasm::Trap::InvalidConversionToInteger, trapOffset);
}
void MacroAssemblerLOONG64Compat::profilerEnterFrame(Register framePtr,
Register scratch) {
asMasm().loadJSContext(scratch);
loadPtr(Address(scratch, offsetof(JSContext, profilingActivation_)), scratch);
storePtr(framePtr,
Address(scratch, JitActivation::offsetOfLastProfilingFrame()));
storePtr(ImmPtr(nullptr),
Address(scratch, JitActivation::offsetOfLastProfilingCallSite()));
}
void MacroAssemblerLOONG64Compat::profilerExitFrame() {
jump(asMasm().runtime()->jitRuntime()->getProfilerExitFrameTail());
}
MacroAssembler& MacroAssemblerLOONG64::asMasm() {
return *static_cast<MacroAssembler*>(this);
}
const MacroAssembler& MacroAssemblerLOONG64::asMasm() const {
return *static_cast<const MacroAssembler*>(this);
}
void MacroAssembler::subFromStackPtr(Imm32 imm32) {
if (imm32.value) {
asMasm().subPtr(imm32, StackPointer);
}
}
//{{{ check_macroassembler_style
// ===============================================================
// MacroAssembler high-level usage.
void MacroAssembler::flush() {}
// ===============================================================
// Stack manipulation functions.
size_t MacroAssembler::PushRegsInMaskSizeInBytes(LiveRegisterSet set) {
return set.gprs().size() * sizeof(intptr_t) + set.fpus().getPushSizeInBytes();
}
void MacroAssembler::PushRegsInMask(LiveRegisterSet set) {
int32_t diff =
set.gprs().size() * sizeof(intptr_t) + set.fpus().getPushSizeInBytes();
const int32_t reserved = diff;
reserveStack(reserved);
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) {
diff -= sizeof(intptr_t);
storePtr(*iter, Address(StackPointer, diff));
}
#ifdef ENABLE_WASM_SIMD
# error "Needs more careful logic if SIMD is enabled"
#endif
for (FloatRegisterBackwardIterator iter(set.fpus().reduceSetForPush());
iter.more(); ++iter) {
diff -= sizeof(double);
storeDouble(*iter, Address(StackPointer, diff));
}
MOZ_ASSERT(diff == 0);
}
void MacroAssembler::PopRegsInMaskIgnore(LiveRegisterSet set,
LiveRegisterSet ignore) {
int32_t diff =
set.gprs().size() * sizeof(intptr_t) + set.fpus().getPushSizeInBytes();
const int32_t reserved = diff;
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) {
diff -= sizeof(intptr_t);
if (!ignore.has(*iter)) {
loadPtr(Address(StackPointer, diff), *iter);
}
}
#ifdef ENABLE_WASM_SIMD
# error "Needs more careful logic if SIMD is enabled"
#endif
for (FloatRegisterBackwardIterator iter(set.fpus().reduceSetForPush());
iter.more(); ++iter) {
diff -= sizeof(double);
if (!ignore.has(*iter)) {
loadDouble(Address(StackPointer, diff), *iter);
}
}
MOZ_ASSERT(diff == 0);
freeStack(reserved);
}
void MacroAssembler::storeRegsInMask(LiveRegisterSet set, Address dest,
Register) {
FloatRegisterSet fpuSet(set.fpus().reduceSetForPush());
mozilla::DebugOnly<unsigned> numFpu = fpuSet.size();
int32_t diffF = fpuSet.getPushSizeInBytes();
mozilla::DebugOnly<int32_t> diffG = set.gprs().size() * sizeof(intptr_t);
MOZ_ASSERT(dest.offset >= diffG + diffF);
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) {
diffG -= sizeof(intptr_t);
dest.offset -= sizeof(intptr_t);
storePtr(*iter, dest);
}
MOZ_ASSERT(diffG == 0);
#ifdef ENABLE_WASM_SIMD
# error "Needs more careful logic if SIMD is enabled"
#endif
for (FloatRegisterBackwardIterator iter(fpuSet); iter.more(); ++iter) {
FloatRegister reg = *iter;
diffF -= reg.size();
numFpu -= 1;
dest.offset -= reg.size();
if (reg.isDouble()) {
storeDouble(reg, dest);
} else if (reg.isSingle()) {
storeFloat32(reg, dest);
} else {
MOZ_CRASH("Unknown register type.");
}
}
MOZ_ASSERT(numFpu == 0);
diffF -= diffF % sizeof(uintptr_t);
MOZ_ASSERT(diffF == 0);
}
void MacroAssembler::Push(Register reg) {
ma_push(reg);
adjustFrame(int32_t(sizeof(intptr_t)));
}
void MacroAssembler::Push(const Imm32 imm) {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, imm);
ma_push(scratch);
adjustFrame(int32_t(sizeof(intptr_t)));
}
void MacroAssembler::Push(const ImmWord imm) {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, imm);
ma_push(scratch);
adjustFrame(int32_t(sizeof(intptr_t)));
}
void MacroAssembler::Push(const ImmPtr imm) {
Push(ImmWord(uintptr_t(imm.value)));
}
void MacroAssembler::Push(const ImmGCPtr ptr) {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, ptr);
ma_push(scratch);
adjustFrame(int32_t(sizeof(intptr_t)));
}
void MacroAssembler::Push(FloatRegister f) {
ma_push(f);
adjustFrame(int32_t(sizeof(double)));
}
void MacroAssembler::PushBoxed(FloatRegister reg) {
subFromStackPtr(Imm32(sizeof(double)));
boxDouble(reg, Address(getStackPointer(), 0));
adjustFrame(sizeof(double));
}
void MacroAssembler::Pop(Register reg) {
ma_pop(reg);
adjustFrame(-int32_t(sizeof(intptr_t)));
}
void MacroAssembler::Pop(FloatRegister f) {
ma_pop(f);
adjustFrame(-int32_t(sizeof(double)));
}
void MacroAssembler::Pop(const ValueOperand& val) {
popValue(val);
adjustFrame(-int32_t(sizeof(Value)));
}
void MacroAssembler::PopStackPtr() {
loadPtr(Address(StackPointer, 0), StackPointer);
adjustFrame(-int32_t(sizeof(intptr_t)));
}
void MacroAssembler::freeStackTo(uint32_t framePushed) {
MOZ_ASSERT(framePushed <= framePushed_);
ma_sub_d(StackPointer, FramePointer, Imm32(framePushed));
framePushed_ = framePushed;
}
// ===============================================================
// Simple call functions.
CodeOffset MacroAssembler::call(Register reg) {
as_jirl(ra, reg, BOffImm16(0));
return CodeOffset(currentOffset());
}
CodeOffset MacroAssembler::call(Label* label) {
ma_bl(label);
return CodeOffset(currentOffset());
}
CodeOffset MacroAssembler::callWithPatch() {
as_bl(JOffImm26(1 * sizeof(uint32_t)));
return CodeOffset(currentOffset());
}
void MacroAssembler::patchCall(uint32_t callerOffset, uint32_t calleeOffset) {
BufferOffset call(callerOffset - 1 * sizeof(uint32_t));
JOffImm26 offset = BufferOffset(calleeOffset).diffB<JOffImm26>(call);
if (!offset.isInvalid()) {
InstJump* bal = (InstJump*)editSrc(call);
bal->setJOffImm26(offset);
} else {
uint32_t u32Offset = callerOffset - 4 * sizeof(uint32_t);
uint32_t* u32 =
reinterpret_cast<uint32_t*>(editSrc(BufferOffset(u32Offset)));
*u32 = calleeOffset - callerOffset;
}
}
CodeOffset MacroAssembler::farJumpWithPatch() {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
as_pcaddi(scratch, 4);
as_ld_w(scratch2, scratch, 0);
as_add_d(scratch, scratch, scratch2);
as_jirl(zero, scratch, BOffImm16(0));
// Allocate space which will be patched by patchFarJump().
CodeOffset farJump(currentOffset());
spew(".space 32bit initValue 0xffff ffff");
writeInst(UINT32_MAX);
return farJump;
}
void MacroAssembler::patchFarJump(CodeOffset farJump, uint32_t targetOffset) {
uint32_t* u32 =
reinterpret_cast<uint32_t*>(editSrc(BufferOffset(farJump.offset())));
MOZ_ASSERT(*u32 == UINT32_MAX);
*u32 = targetOffset - farJump.offset();
}
CodeOffset MacroAssembler::call(wasm::SymbolicAddress target) {
movePtr(target, CallReg);
return call(CallReg);
}
void MacroAssembler::call(const Address& addr) {
loadPtr(addr, CallReg);
call(CallReg);
}
void MacroAssembler::call(ImmWord target) { call(ImmPtr((void*)target.value)); }
void MacroAssembler::call(ImmPtr target) {
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, target, RelocationKind::HARDCODED);
ma_call(target);
}
void MacroAssembler::call(JitCode* c) {
ScratchRegisterScope scratch(asMasm());
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE);
ma_liPatchable(scratch, ImmPtr(c->raw()));
callJitNoProfiler(scratch);
}
CodeOffset MacroAssembler::nopPatchableToCall() {
// LOONG64
as_nop(); // lu12i_w
as_nop(); // ori
as_nop(); // lu32i_d
as_nop(); // jirl
return CodeOffset(currentOffset());
}
void MacroAssembler::patchNopToCall(uint8_t* call, uint8_t* target) {
Instruction* inst = (Instruction*)call - 4 /* four nops */;
Assembler::WriteLoad64Instructions(inst, ScratchRegister, (uint64_t)target);
inst[3] = InstImm(op_jirl, BOffImm16(0), ScratchRegister, ra);
}
void MacroAssembler::patchCallToNop(uint8_t* call) {
Instruction* inst = (Instruction*)call - 4 /* four nops */;
inst[0].makeNop(); // lu12i_w
inst[1].makeNop(); // ori
inst[2].makeNop(); // lu32i_d
inst[3].makeNop(); // jirl
}
void MacroAssembler::pushReturnAddress() { push(ra); }
void MacroAssembler::popReturnAddress() { pop(ra); }
// ===============================================================
// ABI function calls.
void MacroAssembler::setupUnalignedABICall(Register scratch) {
MOZ_ASSERT(!IsCompilingWasm(), "wasm should only use aligned ABI calls");
setupNativeABICall();
dynamicAlignment_ = true;
as_or(scratch, StackPointer, zero);
// Force sp to be aligned
asMasm().subPtr(Imm32(sizeof(uintptr_t)), StackPointer);
ma_and(StackPointer, StackPointer, Imm32(~(ABIStackAlignment - 1)));
storePtr(scratch, Address(StackPointer, 0));
}
void MacroAssembler::callWithABIPre(uint32_t* stackAdjust, bool callFromWasm) {
MOZ_ASSERT(inCall_);
uint32_t stackForCall = abiArgs_.stackBytesConsumedSoFar();
// Reserve place for $ra.
stackForCall += sizeof(intptr_t);
if (dynamicAlignment_) {
stackForCall += ComputeByteAlignment(stackForCall, ABIStackAlignment);
} else {
uint32_t alignmentAtPrologue = callFromWasm ? sizeof(wasm::Frame) : 0;
stackForCall += ComputeByteAlignment(
stackForCall + framePushed() + alignmentAtPrologue, ABIStackAlignment);
}
*stackAdjust = stackForCall;
reserveStack(stackForCall);
// Save $ra because call is going to clobber it. Restore it in
// callWithABIPost. NOTE: This is needed for calls from SharedIC.
// Maybe we can do this differently.
storePtr(ra, Address(StackPointer, stackForCall - sizeof(intptr_t)));
// Position all arguments.
{
enoughMemory_ &= moveResolver_.resolve();
if (!enoughMemory_) {
return;
}
MoveEmitter emitter(*this);
emitter.emit(moveResolver_);
emitter.finish();
}
assertStackAlignment(ABIStackAlignment);
}
void MacroAssembler::callWithABIPost(uint32_t stackAdjust, ABIType result,
bool callFromWasm) {
// Restore ra value (as stored in callWithABIPre()).
loadPtr(Address(StackPointer, stackAdjust - sizeof(intptr_t)), ra);
if (dynamicAlignment_) {
// Restore sp value from stack (as stored in setupUnalignedABICall()).
loadPtr(Address(StackPointer, stackAdjust), StackPointer);
// Use adjustFrame instead of freeStack because we already restored sp.
adjustFrame(-stackAdjust);
} else {
freeStack(stackAdjust);
}
#ifdef DEBUG
MOZ_ASSERT(inCall_);
inCall_ = false;
#endif
}
void MacroAssembler::callWithABINoProfiler(Register fun, ABIType result) {
SecondScratchRegisterScope scratch2(asMasm());
// Load the callee in scratch2, no instruction between the movePtr and
// call should clobber it. Note that we can't use fun because it may be
// one of the IntArg registers clobbered before the call.
movePtr(fun, scratch2);
uint32_t stackAdjust;
callWithABIPre(&stackAdjust);
call(scratch2);
callWithABIPost(stackAdjust, result);
}
void MacroAssembler::callWithABINoProfiler(const Address& fun, ABIType result) {
SecondScratchRegisterScope scratch2(asMasm());
// Load the callee in scratch2, as above.
loadPtr(fun, scratch2);
uint32_t stackAdjust;
callWithABIPre(&stackAdjust);
call(scratch2);
callWithABIPost(stackAdjust, result);
}
// ===============================================================
// Jit Frames.
uint32_t MacroAssembler::pushFakeReturnAddress(Register scratch) {
CodeLabel cl;
ma_li(scratch, &cl);
Push(scratch);
bind(&cl);
uint32_t retAddr = currentOffset();
addCodeLabel(cl);
return retAddr;
}
// ===============================================================
// Move instructions
void MacroAssembler::moveValue(const TypedOrValueRegister& src,
const ValueOperand& dest) {
if (src.hasValue()) {
moveValue(src.valueReg(), dest);
return;
}
MIRType type = src.type();
AnyRegister reg = src.typedReg();
if (!IsFloatingPointType(type)) {
boxNonDouble(ValueTypeFromMIRType(type), reg.gpr(), dest);
return;
}
ScratchDoubleScope fpscratch(asMasm());
FloatRegister scratch = fpscratch;
FloatRegister freg = reg.fpu();
if (type == MIRType::Float32) {
convertFloat32ToDouble(freg, scratch);
freg = scratch;
}
boxDouble(freg, dest, scratch);
}
void MacroAssembler::moveValue(const ValueOperand& src,
const ValueOperand& dest) {
if (src == dest) {
return;
}
movePtr(src.valueReg(), dest.valueReg());
}
void MacroAssembler::moveValue(const Value& src, const ValueOperand& dest) {
if (!src.isGCThing()) {
ma_li(dest.valueReg(), ImmWord(src.asRawBits()));
return;
}
writeDataRelocation(src);
movWithPatch(ImmWord(src.asRawBits()), dest.valueReg());
}
// ===============================================================
// Branch functions
void MacroAssembler::loadStoreBuffer(Register ptr, Register buffer) {
ma_and(buffer, ptr, Imm32(int32_t(~gc::ChunkMask)));
loadPtr(Address(buffer, gc::ChunkStoreBufferOffset), buffer);
}
void MacroAssembler::branchPtrInNurseryChunk(Condition cond, Register ptr,
Register temp, Label* label) {
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
MOZ_ASSERT(ptr != temp);
MOZ_ASSERT(ptr != ScratchRegister &&
ptr != SecondScratchReg); // Both may be used internally.
MOZ_ASSERT(temp != ScratchRegister && temp != SecondScratchReg);
MOZ_ASSERT(temp != InvalidReg);
ma_and(temp, ptr, Imm32(int32_t(~gc::ChunkMask)));
branchPtr(InvertCondition(cond), Address(temp, gc::ChunkStoreBufferOffset),
zero, label);
}
void MacroAssembler::branchValueIsNurseryCell(Condition cond,
const Address& address,
Register temp, Label* label) {
branchValueIsNurseryCellImpl(cond, address, temp, label);
}
void MacroAssembler::branchValueIsNurseryCell(Condition cond,
ValueOperand value, Register temp,
Label* label) {
branchValueIsNurseryCellImpl(cond, value, temp, label);
}
template <typename T>
void MacroAssembler::branchValueIsNurseryCellImpl(Condition cond,
const T& value, Register temp,
Label* label) {
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
MOZ_ASSERT(temp != InvalidReg);
Label done;
branchTestGCThing(Assembler::NotEqual, value,
cond == Assembler::Equal ? &done : label);
getGCThingValueChunk(value, temp);
loadPtr(Address(temp, gc::ChunkStoreBufferOffset), temp);
branchPtr(InvertCondition(cond), temp, zero, label);
bind(&done);
}
void MacroAssembler::branchTestValue(Condition cond, const ValueOperand& lhs,
const Value& rhs, Label* label) {
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(lhs.valueReg() != scratch);
moveValue(rhs, ValueOperand(scratch));
ma_b(lhs.valueReg(), scratch, label, cond);
}
// ========================================================================
// Memory access primitives.
template <typename T>
void MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value,
MIRType valueType, const T& dest) {
MOZ_ASSERT(valueType < MIRType::Value);
if (valueType == MIRType::Double) {
boxDouble(value.reg().typedReg().fpu(), dest);
return;
}
if (value.constant()) {
storeValue(value.value(), dest);
} else {
storeValue(ValueTypeFromMIRType(valueType), value.reg().typedReg().gpr(),
dest);
}
}
template void MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value,
MIRType valueType,
const Address& dest);
template void MacroAssembler::storeUnboxedValue(
const ConstantOrRegister& value, MIRType valueType,
const BaseObjectElementIndex& dest);
void MacroAssembler::comment(const char* msg) { Assembler::comment(msg); }
// ===============================================================
// WebAssembly
FaultingCodeOffset MacroAssembler::wasmTrapInstruction() {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
as_break(WASM_TRAP); // TODO: as_teq(zero, zero, WASM_TRAP)
return fco;
}
void MacroAssembler::wasmBoundsCheck32(Condition cond, Register index,
Register boundsCheckLimit, Label* ok) {
ma_b(index, boundsCheckLimit, ok, cond);
}
void MacroAssembler::wasmBoundsCheck32(Condition cond, Register index,
Address boundsCheckLimit, Label* ok) {
SecondScratchRegisterScope scratch2(asMasm());
load32(boundsCheckLimit, scratch2);
ma_b(index, Register(scratch2), ok, cond);
}
void MacroAssembler::wasmBoundsCheck64(Condition cond, Register64 index,
Register64 boundsCheckLimit, Label* ok) {
ma_b(index.reg, boundsCheckLimit.reg, ok, cond);
}
void MacroAssembler::wasmBoundsCheck64(Condition cond, Register64 index,
Address boundsCheckLimit, Label* ok) {
SecondScratchRegisterScope scratch2(asMasm());
loadPtr(boundsCheckLimit, scratch2);
ma_b(index.reg, scratch2, ok, cond);
}
// FTINTRZ behaves as follows:
//
// on NaN it produces zero
// on too large it produces INT_MAX (for appropriate type)
// on too small it produces INT_MIN (ditto)
void MacroAssembler::wasmTruncateDoubleToUInt32(FloatRegister input,
Register output,
bool isSaturating,
Label* oolEntry) {
ScratchRegisterScope scratch(asMasm());
ScratchDoubleScope fpscratch(asMasm());
if (!isSaturating) {
ma_bc_d(input, input, oolEntry, Assembler::DoubleUnordered);
}
as_ftintrz_l_d(fpscratch, input);
moveFromDouble(fpscratch, output);
as_srli_d(scratch, output, 32);
as_slli_w(output, output, 0);
ma_b(scratch, Imm32(0), oolEntry, Assembler::NotEqual);
}
void MacroAssembler::wasmTruncateFloat32ToUInt32(FloatRegister input,
Register output,
bool isSaturating,
Label* oolEntry) {
ScratchRegisterScope scratch(asMasm());
ScratchDoubleScope fpscratch(asMasm());
if (!isSaturating) {
ma_bc_s(input, input, oolEntry, Assembler::DoubleUnordered);
}
as_ftintrz_l_s(fpscratch, input);
moveFromDouble(fpscratch, output);
as_srli_d(scratch, output, 32);
as_slli_w(output, output, 0);
ma_b(scratch, Imm32(0), oolEntry, Assembler::NotEqual);
}
// Assembler::CauseV is a enum,called FCSRBit. Assembler::CauseV == 16
void MacroAssembler::wasmTruncateDoubleToInt32(FloatRegister input,
Register output,
bool isSaturating,
Label* oolEntry) {
ScratchRegisterScope scratch(asMasm());
ScratchFloat32Scope fpscratch(asMasm());
as_ftintrz_w_d(fpscratch, input);
as_movfcsr2gr(scratch);
moveFromFloat32(fpscratch, output);
MOZ_ASSERT(Assembler::CauseV < 32);
as_bstrpick_w(scratch, scratch, Assembler::CauseV, Assembler::CauseV);
ma_b(scratch, Imm32(0), oolEntry, Assembler::NotEqual);
}
void MacroAssembler::wasmTruncateFloat32ToInt32(FloatRegister input,
Register output,
bool isSaturating,
Label* oolEntry) {
ScratchRegisterScope scratch(asMasm());
ScratchFloat32Scope fpscratch(asMasm());
as_ftintrz_w_s(fpscratch, input);
as_movfcsr2gr(scratch);
moveFromFloat32(fpscratch, output);
MOZ_ASSERT(Assembler::CauseV < 32);
as_bstrpick_w(scratch, scratch, Assembler::CauseV, Assembler::CauseV);
ma_b(scratch, Imm32(0), oolEntry, Assembler::NotEqual);
}
void MacroAssembler::wasmTruncateDoubleToUInt64(
FloatRegister input, Register64 output_, bool isSaturating, Label* oolEntry,
Label* oolRejoin, FloatRegister tempDouble) {
MOZ_ASSERT(tempDouble.isInvalid());
ScratchDoubleScope fpscratch(asMasm());
Register output = output_.reg;
Label done;
if (!isSaturating) {
ma_bc_d(input, input, oolEntry, Assembler::DoubleUnordered);
}
as_ftintrz_l_d(fpscratch, input);
moveFromDouble(fpscratch, output);
loadConstantDouble(double(INT64_MAX + 1ULL), fpscratch);
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_li(scratch2, ImmWord(INT64_MAX));
// For numbers in -1.[ : ]INT64_MAX range do nothing more
ma_b(output, Register(scratch2), &done, Assembler::Below, ShortJump);
ma_li(scratch2, ImmWord(INT64_MIN));
as_fsub_d(fpscratch, input, fpscratch);
as_ftintrz_l_d(fpscratch, fpscratch);
as_movfcsr2gr(scratch);
moveFromDouble(fpscratch, output);
as_bstrpick_d(scratch, scratch, Assembler::CauseV, Assembler::CauseV);
as_add_d(output, output, scratch2);
// Guard against negative values that result in 0 due the precision loss.
as_sltui(scratch2, output, 1);
as_or(scratch, scratch, scratch2);
ma_b(scratch, zero, oolEntry, Assembler::NotEqual);
bind(&done);
if (isSaturating) {
bind(oolRejoin);
}
}
void MacroAssembler::wasmTruncateFloat32ToUInt64(
FloatRegister input, Register64 output_, bool isSaturating, Label* oolEntry,
Label* oolRejoin, FloatRegister tempFloat) {
MOZ_ASSERT(tempFloat.isInvalid());
ScratchDoubleScope fpscratch(asMasm());
Register output = output_.reg;
Label done;
if (!isSaturating) {
ma_bc_s(input, input, oolEntry, Assembler::DoubleUnordered);
}
as_ftintrz_l_s(fpscratch, input);
moveFromDouble(fpscratch, output);
loadConstantFloat32(float(INT64_MAX + 1ULL), fpscratch);
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_li(scratch2, ImmWord(INT64_MAX));
// For numbers in -1.[ : ]INT64_MAX range do nothing more
ma_b(output, Register(scratch2), &done, Assembler::Below, ShortJump);
ma_li(scratch2, ImmWord(INT64_MIN));
as_fsub_s(fpscratch, input, fpscratch);
as_ftintrz_l_s(fpscratch, fpscratch);
as_movfcsr2gr(scratch);
moveFromDouble(fpscratch, output);
as_bstrpick_d(scratch, scratch, Assembler::CauseV, Assembler::CauseV);
as_add_d(output, output, scratch2);
// Guard against negative values that result in 0 due the precision loss.
as_sltui(scratch2, output, 1);
as_or(scratch, scratch, scratch2);
ma_b(scratch, zero, oolEntry, Assembler::NotEqual);
bind(&done);
if (isSaturating) {
bind(oolRejoin);
}
}
void MacroAssembler::wasmTruncateDoubleToInt64(
FloatRegister input, Register64 output, bool isSaturating, Label* oolEntry,
Label* oolRejoin, FloatRegister tempDouble) {
MOZ_ASSERT(tempDouble.isInvalid());
ScratchRegisterScope scratch(asMasm());
ScratchDoubleScope fpscratch(asMasm());
as_ftintrz_l_d(fpscratch, input);
as_movfcsr2gr(scratch);
moveFromDouble(fpscratch, output.reg);
as_bstrpick_d(scratch, scratch, Assembler::CauseV, Assembler::CauseV);
ma_b(scratch, zero, oolEntry, Assembler::NotEqual);
if (isSaturating) {
bind(oolRejoin);
}
}
void MacroAssembler::wasmTruncateFloat32ToInt64(
FloatRegister input, Register64 output, bool isSaturating, Label* oolEntry,
Label* oolRejoin, FloatRegister tempFloat) {
MOZ_ASSERT(tempFloat.isInvalid());
ScratchRegisterScope scratch(asMasm());
ScratchDoubleScope fpscratch(asMasm());
as_ftintrz_l_s(fpscratch, input);
as_movfcsr2gr(scratch);
moveFromDouble(fpscratch, output.reg);
as_bstrpick_d(scratch, scratch, Assembler::CauseV, Assembler::CauseV);
ma_b(scratch, zero, oolEntry, Assembler::NotEqual);
if (isSaturating) {
bind(oolRejoin);
}
}
void MacroAssembler::oolWasmTruncateCheckF32ToI32(FloatRegister input,
Register output,
TruncFlags flags,
wasm::BytecodeOffset off,
Label* rejoin) {
outOfLineWasmTruncateToInt32Check(input, output, MIRType::Float32, flags,
rejoin, off);
}
void MacroAssembler::oolWasmTruncateCheckF64ToI32(FloatRegister input,
Register output,
TruncFlags flags,
wasm::BytecodeOffset off,
Label* rejoin) {
outOfLineWasmTruncateToInt32Check(input, output, MIRType::Double, flags,
rejoin, off);
}
void MacroAssembler::oolWasmTruncateCheckF32ToI64(FloatRegister input,
Register64 output,
TruncFlags flags,
wasm::BytecodeOffset off,
Label* rejoin) {
outOfLineWasmTruncateToInt64Check(input, output, MIRType::Float32, flags,
rejoin, off);
}
void MacroAssembler::oolWasmTruncateCheckF64ToI64(FloatRegister input,
Register64 output,
TruncFlags flags,
wasm::BytecodeOffset off,
Label* rejoin) {
outOfLineWasmTruncateToInt64Check(input, output, MIRType::Double, flags,
rejoin, off);
}
void MacroAssembler::wasmLoad(const wasm::MemoryAccessDesc& access,
Register memoryBase, Register ptr,
Register ptrScratch, AnyRegister output) {
wasmLoadImpl(access, memoryBase, ptr, ptrScratch, output, InvalidReg);
}
void MacroAssembler::wasmLoadI64(const wasm::MemoryAccessDesc& access,
Register memoryBase, Register ptr,
Register ptrScratch, Register64 output) {
wasmLoadI64Impl(access, memoryBase, ptr, ptrScratch, output, InvalidReg);
}
void MacroAssembler::wasmStore(const wasm::MemoryAccessDesc& access,
AnyRegister value, Register memoryBase,
Register ptr, Register ptrScratch) {
wasmStoreImpl(access, value, memoryBase, ptr, ptrScratch, InvalidReg);
}
void MacroAssembler::wasmStoreI64(const wasm::MemoryAccessDesc& access,
Register64 value, Register memoryBase,
Register ptr, Register ptrScratch) {
wasmStoreI64Impl(access, value, memoryBase, ptr, ptrScratch, InvalidReg);
}
void MacroAssembler::enterFakeExitFrameForWasm(Register cxreg, Register scratch,
ExitFrameType type) {
enterFakeExitFrame(cxreg, scratch, type);
}
// TODO(loong64): widenInt32 should be nop?
void MacroAssembler::widenInt32(Register r) {
move32To64SignExtend(r, Register64(r));
}
// ========================================================================
// Convert floating point.
void MacroAssembler::convertUInt64ToFloat32(Register64 src_, FloatRegister dest,
Register temp) {
MOZ_ASSERT(temp == Register::Invalid());
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
Register src = src_.reg;
Label positive, done;
ma_b(src, src, &positive, NotSigned, ShortJump);
MOZ_ASSERT(src != scratch);
MOZ_ASSERT(src != scratch2);
ma_and(scratch, src, Imm32(1));
as_srli_d(scratch2, src, 1);
as_or(scratch, scratch, scratch2);
as_movgr2fr_d(dest, scratch);
as_ffint_s_l(dest, dest);
addFloat32(dest, dest);
ma_b(&done, ShortJump);
bind(&positive);
as_movgr2fr_d(dest, src);
as_ffint_s_l(dest, dest);
bind(&done);
}
void MacroAssembler::convertInt64ToFloat32(Register64 src, FloatRegister dest) {
as_movgr2fr_d(dest, src.reg);
as_ffint_s_l(dest, dest);
}
bool MacroAssembler::convertUInt64ToDoubleNeedsTemp() { return false; }
void MacroAssembler::convertUInt64ToDouble(Register64 src, FloatRegister dest,
Register temp) {
MOZ_ASSERT(temp == Register::Invalid());
MacroAssemblerSpecific::convertUInt64ToDouble(src.reg, dest);
}
void MacroAssembler::convertInt64ToDouble(Register64 src, FloatRegister dest) {
as_movgr2fr_d(dest, src.reg);
as_ffint_d_l(dest, dest);
}
void MacroAssembler::convertIntPtrToDouble(Register src, FloatRegister dest) {
convertInt64ToDouble(Register64(src), dest);
}
// ========================================================================
// Primitive atomic operations.
template <typename T>
static void CompareExchange(MacroAssembler& masm,
const wasm::MemoryAccessDesc* access,
Scalar::Type type, Synchronization sync,
const T& mem, Register oldval, Register newval,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register output) {
ScratchRegisterScope scratch(masm);
SecondScratchRegisterScope scratch2(masm);
bool signExtend = Scalar::isSignedIntType(type);
unsigned nbytes = Scalar::byteSize(type);
switch (nbytes) {
case 1:
case 2:
break;
case 4:
MOZ_ASSERT(valueTemp == InvalidReg);
MOZ_ASSERT(offsetTemp == InvalidReg);
MOZ_ASSERT(maskTemp == InvalidReg);
break;
default:
MOZ_CRASH();
}
Label again, end;
masm.computeEffectiveAddress(mem, scratch);
if (nbytes == 4) {
masm.memoryBarrierBefore(sync);
masm.bind(&again);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load32,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_w(output, scratch, 0);
masm.ma_b(output, oldval, &end, Assembler::NotEqual, ShortJump);
masm.as_or(scratch2, newval, zero);
masm.as_sc_w(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &again, Assembler::Zero, ShortJump);
masm.memoryBarrierAfter(sync);
masm.bind(&end);
return;
}
masm.as_andi(offsetTemp, scratch, 3);
masm.subPtr(offsetTemp, scratch);
masm.as_slli_w(offsetTemp, offsetTemp, 3);
masm.ma_li(maskTemp, Imm32(UINT32_MAX >> ((4 - nbytes) * 8)));
masm.as_sll_w(maskTemp, maskTemp, offsetTemp);
masm.as_nor(maskTemp, zero, maskTemp);
masm.memoryBarrierBefore(sync);
masm.bind(&again);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load32,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_w(scratch2, scratch, 0);
masm.as_srl_w(output, scratch2, offsetTemp);
switch (nbytes) {
case 1:
if (signExtend) {
masm.as_ext_w_b(valueTemp, oldval);
masm.as_ext_w_b(output, output);
} else {
masm.as_andi(valueTemp, oldval, 0xff);
masm.as_andi(output, output, 0xff);
}
break;
case 2:
if (signExtend) {
masm.as_ext_w_h(valueTemp, oldval);
masm.as_ext_w_h(output, output);
} else {
masm.as_bstrpick_d(valueTemp, oldval, 15, 0);
masm.as_bstrpick_d(output, output, 15, 0);
}
break;
}
masm.ma_b(output, valueTemp, &end, Assembler::NotEqual, ShortJump);
masm.as_sll_w(valueTemp, newval, offsetTemp);
masm.as_and(scratch2, scratch2, maskTemp);
masm.as_or(scratch2, scratch2, valueTemp);
masm.as_sc_w(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &again, Assembler::Zero, ShortJump);
masm.memoryBarrierAfter(sync);
masm.bind(&end);
}
template <typename T>
static void CompareExchange64(MacroAssembler& masm,
const wasm::MemoryAccessDesc* access,
Synchronization sync, const T& mem,
Register64 expect, Register64 replace,
Register64 output) {
MOZ_ASSERT(expect != output && replace != output);
ScratchRegisterScope scratch(masm);
SecondScratchRegisterScope scratch2(masm);
masm.computeEffectiveAddress(mem, scratch);
Label tryAgain;
Label exit;
masm.memoryBarrierBefore(sync);
masm.bind(&tryAgain);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load64,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_d(output.reg, scratch, 0);
masm.ma_b(output.reg, expect.reg, &exit, Assembler::NotEqual, ShortJump);
masm.movePtr(replace.reg, scratch2);
masm.as_sc_d(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &tryAgain, Assembler::Zero,
ShortJump);
masm.memoryBarrierAfter(sync);
masm.bind(&exit);
}
template <typename T>
static void AtomicExchange(MacroAssembler& masm,
const wasm::MemoryAccessDesc* access,
Scalar::Type type, Synchronization sync,
const T& mem, Register value, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
ScratchRegisterScope scratch(masm);
SecondScratchRegisterScope scratch2(masm);
bool signExtend = Scalar::isSignedIntType(type);
unsigned nbytes = Scalar::byteSize(type);
switch (nbytes) {
case 1:
case 2:
break;
case 4:
MOZ_ASSERT(valueTemp == InvalidReg);
MOZ_ASSERT(offsetTemp == InvalidReg);
MOZ_ASSERT(maskTemp == InvalidReg);
break;
default:
MOZ_CRASH();
}
Label again;
masm.computeEffectiveAddress(mem, scratch);
if (nbytes == 4) {
masm.memoryBarrierBefore(sync);
masm.bind(&again);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load32,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_w(output, scratch, 0);
masm.as_or(scratch2, value, zero);
masm.as_sc_w(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &again, Assembler::Zero, ShortJump);
masm.memoryBarrierAfter(sync);
return;
}
masm.as_andi(offsetTemp, scratch, 3);
masm.subPtr(offsetTemp, scratch);
masm.as_slli_w(offsetTemp, offsetTemp, 3);
masm.ma_li(maskTemp, Imm32(UINT32_MAX >> ((4 - nbytes) * 8)));
masm.as_sll_w(maskTemp, maskTemp, offsetTemp);
masm.as_nor(maskTemp, zero, maskTemp);
switch (nbytes) {
case 1:
masm.as_andi(valueTemp, value, 0xff);
break;
case 2:
masm.as_bstrpick_d(valueTemp, value, 15, 0);
break;
}
masm.as_sll_w(valueTemp, valueTemp, offsetTemp);
masm.memoryBarrierBefore(sync);
masm.bind(&again);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load32,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_w(output, scratch, 0);
masm.as_and(scratch2, output, maskTemp);
masm.as_or(scratch2, scratch2, valueTemp);
masm.as_sc_w(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &again, Assembler::Zero, ShortJump);
masm.as_srl_w(output, output, offsetTemp);
switch (nbytes) {
case 1:
if (signExtend) {
masm.as_ext_w_b(output, output);
} else {
masm.as_andi(output, output, 0xff);
}
break;
case 2:
if (signExtend) {
masm.as_ext_w_h(output, output);
} else {
masm.as_bstrpick_d(output, output, 15, 0);
}
break;
}
masm.memoryBarrierAfter(sync);
}
template <typename T>
static void AtomicExchange64(MacroAssembler& masm,
const wasm::MemoryAccessDesc* access,
Synchronization sync, const T& mem,
Register64 value, Register64 output) {
MOZ_ASSERT(value != output);
ScratchRegisterScope scratch(masm);
SecondScratchRegisterScope scratch2(masm);
masm.computeEffectiveAddress(mem, scratch);
Label tryAgain;
masm.memoryBarrierBefore(sync);
masm.bind(&tryAgain);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load64,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_d(output.reg, scratch, 0);
masm.movePtr(value.reg, scratch2);
masm.as_sc_d(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &tryAgain, Assembler::Zero,
ShortJump);
masm.memoryBarrierAfter(sync);
}
template <typename T>
static void AtomicFetchOp(MacroAssembler& masm,
const wasm::MemoryAccessDesc* access,
Scalar::Type type, Synchronization sync, AtomicOp op,
const T& mem, Register value, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
ScratchRegisterScope scratch(masm);
SecondScratchRegisterScope scratch2(masm);
bool signExtend = Scalar::isSignedIntType(type);
unsigned nbytes = Scalar::byteSize(type);
switch (nbytes) {
case 1:
case 2:
break;
case 4:
MOZ_ASSERT(valueTemp == InvalidReg);
MOZ_ASSERT(offsetTemp == InvalidReg);
MOZ_ASSERT(maskTemp == InvalidReg);
break;
default:
MOZ_CRASH();
}
Label again;
masm.computeEffectiveAddress(mem, scratch);
if (nbytes == 4) {
masm.memoryBarrierBefore(sync);
masm.bind(&again);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load32,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_w(output, scratch, 0);
switch (op) {
case AtomicOp::Add:
masm.as_add_w(scratch2, output, value);
break;
case AtomicOp::Sub:
masm.as_sub_w(scratch2, output, value);
break;
case AtomicOp::And:
masm.as_and(scratch2, output, value);
break;
case AtomicOp::Or:
masm.as_or(scratch2, output, value);
break;
case AtomicOp::Xor:
masm.as_xor(scratch2, output, value);
break;
default:
MOZ_CRASH();
}
masm.as_sc_w(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &again, Assembler::Zero, ShortJump);
masm.memoryBarrierAfter(sync);
return;
}
masm.as_andi(offsetTemp, scratch, 3);
masm.subPtr(offsetTemp, scratch);
masm.as_slli_w(offsetTemp, offsetTemp, 3);
masm.ma_li(maskTemp, Imm32(UINT32_MAX >> ((4 - nbytes) * 8)));
masm.as_sll_w(maskTemp, maskTemp, offsetTemp);
masm.as_nor(maskTemp, zero, maskTemp);
masm.memoryBarrierBefore(sync);
masm.bind(&again);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load32,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_w(scratch2, scratch, 0);
masm.as_srl_w(output, scratch2, offsetTemp);
switch (op) {
case AtomicOp::Add:
masm.as_add_w(valueTemp, output, value);
break;
case AtomicOp::Sub:
masm.as_sub_w(valueTemp, output, value);
break;
case AtomicOp::And:
masm.as_and(valueTemp, output, value);
break;
case AtomicOp::Or:
masm.as_or(valueTemp, output, value);
break;
case AtomicOp::Xor:
masm.as_xor(valueTemp, output, value);
break;
default:
MOZ_CRASH();
}
switch (nbytes) {
case 1:
masm.as_andi(valueTemp, valueTemp, 0xff);
break;
case 2:
masm.as_bstrpick_d(valueTemp, valueTemp, 15, 0);
break;
}
masm.as_sll_w(valueTemp, valueTemp, offsetTemp);
masm.as_and(scratch2, scratch2, maskTemp);
masm.as_or(scratch2, scratch2, valueTemp);
masm.as_sc_w(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &again, Assembler::Zero, ShortJump);
switch (nbytes) {
case 1:
if (signExtend) {
masm.as_ext_w_b(output, output);
} else {
masm.as_andi(output, output, 0xff);
}
break;
case 2:
if (signExtend) {
masm.as_ext_w_h(output, output);
} else {
masm.as_bstrpick_d(output, output, 15, 0);
}
break;
}
masm.memoryBarrierAfter(sync);
}
template <typename T>
static void AtomicFetchOp64(MacroAssembler& masm,
const wasm::MemoryAccessDesc* access,
Synchronization sync, AtomicOp op, Register64 value,
const T& mem, Register64 temp, Register64 output) {
MOZ_ASSERT(value != output);
MOZ_ASSERT(value != temp);
ScratchRegisterScope scratch(masm);
SecondScratchRegisterScope scratch2(masm);
masm.computeEffectiveAddress(mem, scratch);
Label tryAgain;
masm.memoryBarrierBefore(sync);
masm.bind(&tryAgain);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load64,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_d(output.reg, scratch, 0);
switch (op) {
case AtomicOp::Add:
masm.as_add_d(temp.reg, output.reg, value.reg);
break;
case AtomicOp::Sub:
masm.as_sub_d(temp.reg, output.reg, value.reg);
break;
case AtomicOp::And:
masm.as_and(temp.reg, output.reg, value.reg);
break;
case AtomicOp::Or:
masm.as_or(temp.reg, output.reg, value.reg);
break;
case AtomicOp::Xor:
masm.as_xor(temp.reg, output.reg, value.reg);
break;
default:
MOZ_CRASH();
}
masm.as_sc_d(temp.reg, scratch, 0);
masm.ma_b(temp.reg, temp.reg, &tryAgain, Assembler::Zero, ShortJump);
masm.memoryBarrierAfter(sync);
}
void MacroAssembler::compareExchange(Scalar::Type type, Synchronization sync,
const Address& mem, Register oldval,
Register newval, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
CompareExchange(*this, nullptr, type, sync, mem, oldval, newval, valueTemp,
offsetTemp, maskTemp, output);
}
void MacroAssembler::compareExchange(Scalar::Type type, Synchronization sync,
const BaseIndex& mem, Register oldval,
Register newval, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
CompareExchange(*this, nullptr, type, sync, mem, oldval, newval, valueTemp,
offsetTemp, maskTemp, output);
}
void MacroAssembler::compareExchange64(Synchronization sync, const Address& mem,
Register64 expect, Register64 replace,
Register64 output) {
CompareExchange64(*this, nullptr, sync, mem, expect, replace, output);
}
void MacroAssembler::compareExchange64(Synchronization sync,
const BaseIndex& mem, Register64 expect,
Register64 replace, Register64 output) {
CompareExchange64(*this, nullptr, sync, mem, expect, replace, output);
}
void MacroAssembler::wasmCompareExchange(const wasm::MemoryAccessDesc& access,
const Address& mem, Register oldval,
Register newval, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
CompareExchange(*this, &access, access.type(), access.sync(), mem, oldval,
newval, valueTemp, offsetTemp, maskTemp, output);
}
void MacroAssembler::wasmCompareExchange(const wasm::MemoryAccessDesc& access,
const BaseIndex& mem, Register oldval,
Register newval, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
CompareExchange(*this, &access, access.type(), access.sync(), mem, oldval,
newval, valueTemp, offsetTemp, maskTemp, output);
}
void MacroAssembler::wasmCompareExchange64(const wasm::MemoryAccessDesc& access,
const Address& mem,
Register64 expect,
Register64 replace,
Register64 output) {
CompareExchange64(*this, &access, access.sync(), mem, expect, replace,
output);
}
void MacroAssembler::wasmCompareExchange64(const wasm::MemoryAccessDesc& access,
const BaseIndex& mem,
Register64 expect,
Register64 replace,
Register64 output) {
CompareExchange64(*this, &access, access.sync(), mem, expect, replace,
output);
}
void MacroAssembler::atomicExchange(Scalar::Type type, Synchronization sync,
const Address& mem, Register value,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register output) {
AtomicExchange(*this, nullptr, type, sync, mem, value, valueTemp, offsetTemp,
maskTemp, output);
}
void MacroAssembler::atomicExchange(Scalar::Type type, Synchronization sync,
const BaseIndex& mem, Register value,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register output) {
AtomicExchange(*this, nullptr, type, sync, mem, value, valueTemp, offsetTemp,
maskTemp, output);
}
void MacroAssembler::atomicExchange64(Synchronization sync, const Address& mem,
Register64 value, Register64 output) {
AtomicExchange64(*this, nullptr, sync, mem, value, output);
}
void MacroAssembler::atomicExchange64(Synchronization sync,
const BaseIndex& mem, Register64 value,
Register64 output) {
AtomicExchange64(*this, nullptr, sync, mem, value, output);
}
void MacroAssembler::wasmAtomicExchange(const wasm::MemoryAccessDesc& access,
const Address& mem, Register value,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register output) {
AtomicExchange(*this, &access, access.type(), access.sync(), mem, value,
valueTemp, offsetTemp, maskTemp, output);
}
void MacroAssembler::wasmAtomicExchange(const wasm::MemoryAccessDesc& access,
const BaseIndex& mem, Register value,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register output) {
AtomicExchange(*this, &access, access.type(), access.sync(), mem, value,
valueTemp, offsetTemp, maskTemp, output);
}
void MacroAssembler::atomicFetchOp(Scalar::Type type, Synchronization sync,
AtomicOp op, Register value,
const Address& mem, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
AtomicFetchOp(*this, nullptr, type, sync, op, mem, value, valueTemp,
offsetTemp, maskTemp, output);
}
void MacroAssembler::atomicFetchOp(Scalar::Type type, Synchronization sync,
AtomicOp op, Register value,
const BaseIndex& mem, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
AtomicFetchOp(*this, nullptr, type, sync, op, mem, value, valueTemp,
offsetTemp, maskTemp, output);
}
void MacroAssembler::atomicFetchOp64(Synchronization sync, AtomicOp op,
Register64 value, const Address& mem,
Register64 temp, Register64 output) {
AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, output);
}
void MacroAssembler::atomicFetchOp64(Synchronization sync, AtomicOp op,
Register64 value, const BaseIndex& mem,
Register64 temp, Register64 output) {
AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, output);
}
void MacroAssembler::atomicEffectOp64(Synchronization sync, AtomicOp op,
Register64 value, const Address& mem,
Register64 temp) {
AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, temp);
}
void MacroAssembler::atomicEffectOp64(Synchronization sync, AtomicOp op,
Register64 value, const BaseIndex& mem,
Register64 temp) {
AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, temp);
}
void MacroAssembler::wasmAtomicFetchOp(const wasm::MemoryAccessDesc& access,
AtomicOp op, Register value,
const Address& mem, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
AtomicFetchOp(*this, &access, access.type(), access.sync(), op, mem, value,
valueTemp, offsetTemp, maskTemp, output);
}
void MacroAssembler::wasmAtomicFetchOp(const wasm::MemoryAccessDesc& access,
AtomicOp op, Register value,
const BaseIndex& mem, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register output) {
AtomicFetchOp(*this, &access, access.type(), access.sync(), op, mem, value,
valueTemp, offsetTemp, maskTemp, output);
}
template <typename T>
static void AtomicEffectOp(MacroAssembler& masm,
const wasm::MemoryAccessDesc* access,
Scalar::Type type, Synchronization sync, AtomicOp op,
const T& mem, Register value, Register valueTemp,
Register offsetTemp, Register maskTemp) {
ScratchRegisterScope scratch(masm);
SecondScratchRegisterScope scratch2(masm);
unsigned nbytes = Scalar::byteSize(type);
switch (nbytes) {
case 1:
case 2:
break;
case 4:
MOZ_ASSERT(valueTemp == InvalidReg);
MOZ_ASSERT(offsetTemp == InvalidReg);
MOZ_ASSERT(maskTemp == InvalidReg);
break;
default:
MOZ_CRASH();
}
Label again;
masm.computeEffectiveAddress(mem, scratch);
if (nbytes == 4) {
masm.memoryBarrierBefore(sync);
masm.bind(&again);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load32,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_w(scratch2, scratch, 0);
switch (op) {
case AtomicOp::Add:
masm.as_add_w(scratch2, scratch2, value);
break;
case AtomicOp::Sub:
masm.as_sub_w(scratch2, scratch2, value);
break;
case AtomicOp::And:
masm.as_and(scratch2, scratch2, value);
break;
case AtomicOp::Or:
masm.as_or(scratch2, scratch2, value);
break;
case AtomicOp::Xor:
masm.as_xor(scratch2, scratch2, value);
break;
default:
MOZ_CRASH();
}
masm.as_sc_w(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &again, Assembler::Zero, ShortJump);
masm.memoryBarrierAfter(sync);
return;
}
masm.as_andi(offsetTemp, scratch, 3);
masm.subPtr(offsetTemp, scratch);
masm.as_slli_w(offsetTemp, offsetTemp, 3);
masm.ma_li(maskTemp, Imm32(UINT32_MAX >> ((4 - nbytes) * 8)));
masm.as_sll_w(maskTemp, maskTemp, offsetTemp);
masm.as_nor(maskTemp, zero, maskTemp);
masm.memoryBarrierBefore(sync);
masm.bind(&again);
if (access) {
masm.append(*access, wasm::TrapMachineInsn::Load32,
FaultingCodeOffset(masm.currentOffset()));
}
masm.as_ll_w(scratch2, scratch, 0);
masm.as_srl_w(valueTemp, scratch2, offsetTemp);
switch (op) {
case AtomicOp::Add:
masm.as_add_w(valueTemp, valueTemp, value);
break;
case AtomicOp::Sub:
masm.as_sub_w(valueTemp, valueTemp, value);
break;
case AtomicOp::And:
masm.as_and(valueTemp, valueTemp, value);
break;
case AtomicOp::Or:
masm.as_or(valueTemp, valueTemp, value);
break;
case AtomicOp::Xor:
masm.as_xor(valueTemp, valueTemp, value);
break;
default:
MOZ_CRASH();
}
switch (nbytes) {
case 1:
masm.as_andi(valueTemp, valueTemp, 0xff);
break;
case 2:
masm.as_bstrpick_d(valueTemp, valueTemp, 15, 0);
break;
}
masm.as_sll_w(valueTemp, valueTemp, offsetTemp);
masm.as_and(scratch2, scratch2, maskTemp);
masm.as_or(scratch2, scratch2, valueTemp);
masm.as_sc_w(scratch2, scratch, 0);
masm.ma_b(scratch2, Register(scratch2), &again, Assembler::Zero, ShortJump);
masm.memoryBarrierAfter(sync);
}
void MacroAssembler::wasmAtomicEffectOp(const wasm::MemoryAccessDesc& access,
AtomicOp op, Register value,
const Address& mem, Register valueTemp,
Register offsetTemp,
Register maskTemp) {
AtomicEffectOp(*this, &access, access.type(), access.sync(), op, mem, value,
valueTemp, offsetTemp, maskTemp);
}
void MacroAssembler::wasmAtomicEffectOp(const wasm::MemoryAccessDesc& access,
AtomicOp op, Register value,
const BaseIndex& mem,
Register valueTemp, Register offsetTemp,
Register maskTemp) {
AtomicEffectOp(*this, &access, access.type(), access.sync(), op, mem, value,
valueTemp, offsetTemp, maskTemp);
}
template <typename T>
static void WasmAtomicExchange64(MacroAssembler& masm,
const wasm::MemoryAccessDesc& access,
const T& mem, Register64 value,
Register64 output) {
AtomicExchange64(masm, &access, access.sync(), mem, value, output);
}
void MacroAssembler::wasmAtomicExchange64(const wasm::MemoryAccessDesc& access,
const Address& mem, Register64 src,
Register64 output) {
WasmAtomicExchange64(*this, access, mem, src, output);
}
void MacroAssembler::wasmAtomicExchange64(const wasm::MemoryAccessDesc& access,
const BaseIndex& mem, Register64 src,
Register64 output) {
WasmAtomicExchange64(*this, access, mem, src, output);
}
void MacroAssembler::wasmAtomicFetchOp64(const wasm::MemoryAccessDesc& access,
AtomicOp op, Register64 value,
const Address& mem, Register64 temp,
Register64 output) {
AtomicFetchOp64(*this, &access, access.sync(), op, value, mem, temp, output);
}
void MacroAssembler::wasmAtomicFetchOp64(const wasm::MemoryAccessDesc& access,
AtomicOp op, Register64 value,
const BaseIndex& mem, Register64 temp,
Register64 output) {
AtomicFetchOp64(*this, &access, access.sync(), op, value, mem, temp, output);
}
// ========================================================================
// JS atomic operations.
template <typename T>
static void CompareExchangeJS(MacroAssembler& masm, Scalar::Type arrayType,
Synchronization sync, const T& mem,
Register oldval, Register newval,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register temp,
AnyRegister output) {
if (arrayType == Scalar::Uint32) {
masm.compareExchange(arrayType, sync, mem, oldval, newval, valueTemp,
offsetTemp, maskTemp, temp);
masm.convertUInt32ToDouble(temp, output.fpu());
} else {
masm.compareExchange(arrayType, sync, mem, oldval, newval, valueTemp,
offsetTemp, maskTemp, output.gpr());
}
}
template <typename T>
static void AtomicExchangeJS(MacroAssembler& masm, Scalar::Type arrayType,
Synchronization sync, const T& mem, Register value,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register temp,
AnyRegister output) {
if (arrayType == Scalar::Uint32) {
masm.atomicExchange(arrayType, sync, mem, value, valueTemp, offsetTemp,
maskTemp, temp);
masm.convertUInt32ToDouble(temp, output.fpu());
} else {
masm.atomicExchange(arrayType, sync, mem, value, valueTemp, offsetTemp,
maskTemp, output.gpr());
}
}
template <typename T>
static void AtomicFetchOpJS(MacroAssembler& masm, Scalar::Type arrayType,
Synchronization sync, AtomicOp op, Register value,
const T& mem, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register temp, AnyRegister output) {
if (arrayType == Scalar::Uint32) {
masm.atomicFetchOp(arrayType, sync, op, value, mem, valueTemp, offsetTemp,
maskTemp, temp);
masm.convertUInt32ToDouble(temp, output.fpu());
} else {
masm.atomicFetchOp(arrayType, sync, op, value, mem, valueTemp, offsetTemp,
maskTemp, output.gpr());
}
}
void MacroAssembler::compareExchangeJS(Scalar::Type arrayType,
Synchronization sync, const Address& mem,
Register oldval, Register newval,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register temp,
AnyRegister output) {
CompareExchangeJS(*this, arrayType, sync, mem, oldval, newval, valueTemp,
offsetTemp, maskTemp, temp, output);
}
void MacroAssembler::compareExchangeJS(Scalar::Type arrayType,
Synchronization sync,
const BaseIndex& mem, Register oldval,
Register newval, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register temp, AnyRegister output) {
CompareExchangeJS(*this, arrayType, sync, mem, oldval, newval, valueTemp,
offsetTemp, maskTemp, temp, output);
}
void MacroAssembler::atomicExchangeJS(Scalar::Type arrayType,
Synchronization sync, const Address& mem,
Register value, Register valueTemp,
Register offsetTemp, Register maskTemp,
Register temp, AnyRegister output) {
AtomicExchangeJS(*this, arrayType, sync, mem, value, valueTemp, offsetTemp,
maskTemp, temp, output);
}
void MacroAssembler::atomicExchangeJS(Scalar::Type arrayType,
Synchronization sync,
const BaseIndex& mem, Register value,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register temp,
AnyRegister output) {
AtomicExchangeJS(*this, arrayType, sync, mem, value, valueTemp, offsetTemp,
maskTemp, temp, output);
}
void MacroAssembler::atomicFetchOpJS(Scalar::Type arrayType,
Synchronization sync, AtomicOp op,
Register value, const Address& mem,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register temp,
AnyRegister output) {
AtomicFetchOpJS(*this, arrayType, sync, op, value, mem, valueTemp, offsetTemp,
maskTemp, temp, output);
}
void MacroAssembler::atomicFetchOpJS(Scalar::Type arrayType,
Synchronization sync, AtomicOp op,
Register value, const BaseIndex& mem,
Register valueTemp, Register offsetTemp,
Register maskTemp, Register temp,
AnyRegister output) {
AtomicFetchOpJS(*this, arrayType, sync, op, value, mem, valueTemp, offsetTemp,
maskTemp, temp, output);
}
void MacroAssembler::atomicEffectOpJS(Scalar::Type arrayType,
Synchronization sync, AtomicOp op,
Register value, const BaseIndex& mem,
Register valueTemp, Register offsetTemp,
Register maskTemp) {
AtomicEffectOp(*this, nullptr, arrayType, sync, op, mem, value, valueTemp,
offsetTemp, maskTemp);
}
void MacroAssembler::atomicEffectOpJS(Scalar::Type arrayType,
Synchronization sync, AtomicOp op,
Register value, const Address& mem,
Register valueTemp, Register offsetTemp,
Register maskTemp) {
AtomicEffectOp(*this, nullptr, arrayType, sync, op, mem, value, valueTemp,
offsetTemp, maskTemp);
}
void MacroAssembler::flexibleQuotient32(Register rhs, Register srcDest,
bool isUnsigned,
const LiveRegisterSet&) {
quotient32(rhs, srcDest, isUnsigned);
}
void MacroAssembler::flexibleRemainder32(Register rhs, Register srcDest,
bool isUnsigned,
const LiveRegisterSet&) {
remainder32(rhs, srcDest, isUnsigned);
}
void MacroAssembler::flexibleDivMod32(Register rhs, Register srcDest,
Register remOutput, bool isUnsigned,
const LiveRegisterSet&) {
if (isUnsigned) {
as_mod_wu(remOutput, srcDest, rhs);
as_div_wu(srcDest, srcDest, rhs);
} else {
as_mod_w(remOutput, srcDest, rhs);
as_div_w(srcDest, srcDest, rhs);
}
}
CodeOffset MacroAssembler::moveNearAddressWithPatch(Register dest) {
return movWithPatch(ImmPtr(nullptr), dest);
}
void MacroAssembler::patchNearAddressMove(CodeLocationLabel loc,
CodeLocationLabel target) {
PatchDataWithValueCheck(loc, ImmPtr(target.raw()), ImmPtr(nullptr));
}
// ========================================================================
// Spectre Mitigations.
void MacroAssembler::speculationBarrier() { MOZ_CRASH(); }
void MacroAssembler::floorFloat32ToInt32(FloatRegister src, Register dest,
Label* fail) {
ScratchFloat32Scope fpscratch(asMasm());
FloatRegister scratch = fpscratch;
Label skipCheck, done;
// If Nan, 0 or -0 check for bailout
loadConstantFloat32(0.0f, scratch);
ma_bc_s(src, scratch, &skipCheck, Assembler::DoubleNotEqual, ShortJump);
// If high part is not zero, it is NaN or -0, so we bail.
{
ScratchRegisterScope scratch(asMasm());
moveFromDoubleLo(src, scratch);
branch32(Assembler::NotEqual, scratch, zero, fail);
}
// Input was zero, so return zero.
move32(Imm32(0), dest);
ma_b(&done, ShortJump);
bind(&skipCheck);
as_ftintrm_w_s(scratch, src);
moveFromDoubleLo(scratch, dest);
branch32(Assembler::Equal, dest, Imm32(INT_MIN), fail);
branch32(Assembler::Equal, dest, Imm32(INT_MAX), fail);
bind(&done);
}
void MacroAssembler::floorDoubleToInt32(FloatRegister src, Register dest,
Label* fail) {
ScratchDoubleScope fpscratch(asMasm());
FloatRegister scratch = fpscratch;
Label skipCheck, done;
// If Nan, 0 or -0 check for bailout
loadConstantDouble(0.0, scratch);
ma_bc_d(src, scratch, &skipCheck, Assembler::DoubleNotEqual, ShortJump);
// If high part is not zero, it is NaN or -0, so we bail.
{
ScratchRegisterScope scratch(asMasm());
moveFromDoubleHi(src, scratch);
branch32(Assembler::NotEqual, scratch, zero, fail);
}
// Input was zero, so return zero.
move32(Imm32(0), dest);
ma_b(&done, ShortJump);
bind(&skipCheck);
as_ftintrm_w_d(scratch, src);
moveFromDoubleLo(scratch, dest);
branch32(Assembler::Equal, dest, Imm32(INT_MIN), fail);
branch32(Assembler::Equal, dest, Imm32(INT_MAX), fail);
bind(&done);
}
void MacroAssembler::ceilFloat32ToInt32(FloatRegister src, Register dest,
Label* fail) {
ScratchFloat32Scope fpscratch(asMasm());
FloatRegister scratch = fpscratch;
Label performCeil, done;
// If x < -1 or x > 0 then perform ceil.
loadConstantFloat32(0.0f, scratch);
branchFloat(Assembler::DoubleGreaterThan, src, scratch, &performCeil);
loadConstantFloat32(-1.0f, scratch);
branchFloat(Assembler::DoubleLessThanOrEqual, src, scratch, &performCeil);
// If binary value is not zero, the input was not 0, so we bail.
{
ScratchRegisterScope scratch(asMasm());
moveFromFloat32(src, scratch);
branch32(Assembler::NotEqual, scratch, zero, fail);
}
// Input was zero, so return zero.
move32(Imm32(0), dest);
ma_b(&done, ShortJump);
bind(&performCeil);
as_ftintrp_w_s(scratch, src);
moveFromFloat32(scratch, dest);
branch32(Assembler::Equal, dest, Imm32(INT_MIN), fail);
branch32(Assembler::Equal, dest, Imm32(INT_MAX), fail);
bind(&done);
}
void MacroAssembler::ceilDoubleToInt32(FloatRegister src, Register dest,
Label* fail) {
ScratchDoubleScope fpscratch(asMasm());
FloatRegister scratch = fpscratch;
Label performCeil, done;
// If x < -1 or x > 0 then perform ceil.
loadConstantDouble(0, scratch);
branchDouble(Assembler::DoubleGreaterThan, src, scratch, &performCeil);
loadConstantDouble(-1.0, scratch);
branchDouble(Assembler::DoubleLessThanOrEqual, src, scratch, &performCeil);
// If binary value is not zero, the input was not 0, so we bail.
{
ScratchRegisterScope scratch(asMasm());
moveFromDoubleHi(src, scratch);
branch32(Assembler::NotEqual, scratch, zero, fail);
}
// Input was zero, so return zero.
move32(Imm32(0), dest);
ma_b(&done, ShortJump);
bind(&performCeil);
as_ftintrp_w_d(scratch, src);
moveFromDoubleLo(scratch, dest);
branch32(Assembler::Equal, dest, Imm32(INT_MIN), fail);
branch32(Assembler::Equal, dest, Imm32(INT_MAX), fail);
bind(&done);
}
void MacroAssembler::roundFloat32ToInt32(FloatRegister src, Register dest,
FloatRegister temp, Label* fail) {
ScratchFloat32Scope scratch(*this);
Label negative, end, skipCheck;
// Load biggest number less than 0.5 in the temp register.
loadConstantFloat32(GetBiggestNumberLessThan(0.5f), temp);
// Branch to a slow path for negative inputs. Doesn't catch NaN or -0.
loadConstantFloat32(0.0f, scratch);
ma_bc_s(src, scratch, &negative, Assembler::DoubleLessThan, ShortJump);
// If Nan, 0 or -0 check for bailout
ma_bc_s(src, scratch, &skipCheck, Assembler::DoubleNotEqual, ShortJump);
// If binary value is not zero, it is NaN or -0, so we bail.
{
ScratchRegisterScope scratch(asMasm());
moveFromFloat32(src, scratch);
branch32(Assembler::NotEqual, scratch, zero, fail);
}
// Input was zero, so return zero.
move32(Imm32(0), dest);
ma_b(&end, ShortJump);
bind(&skipCheck);
as_fadd_s(scratch, src, temp);
as_ftintrm_w_s(scratch, scratch);
moveFromFloat32(scratch, dest);
branch32(Assembler::Equal, dest, Imm32(INT_MIN), fail);
branch32(Assembler::Equal, dest, Imm32(INT_MAX), fail);
jump(&end);
// Input is negative, but isn't -0.
bind(&negative);
// Inputs in ]-0.5; 0] need to be added 0.5, other negative inputs need to
// be added the biggest double less than 0.5.
Label loadJoin;
loadConstantFloat32(-0.5f, scratch);
branchFloat(Assembler::DoubleLessThan, src, scratch, &loadJoin);
loadConstantFloat32(0.5f, temp);
bind(&loadJoin);
as_fadd_s(temp, src, temp);
// If input + 0.5 >= 0, input is a negative number >= -0.5 and the
// result is -0.
branchFloat(Assembler::DoubleGreaterThanOrEqual, temp, scratch, fail);
// Truncate and round toward zero.
// This is off-by-one for everything but integer-valued inputs.
as_ftintrm_w_s(scratch, temp);
moveFromFloat32(scratch, dest);
branch32(Assembler::Equal, dest, Imm32(INT_MIN), fail);
bind(&end);
}
void MacroAssembler::roundDoubleToInt32(FloatRegister src, Register dest,
FloatRegister temp, Label* fail) {
ScratchDoubleScope scratch(*this);
Label negative, end, skipCheck;
// Load biggest number less than 0.5 in the temp register.
loadConstantDouble(GetBiggestNumberLessThan(0.5), temp);
// Branch to a slow path for negative inputs. Doesn't catch NaN or -0.
loadConstantDouble(0.0, scratch);
ma_bc_d(src, scratch, &negative, Assembler::DoubleLessThan, ShortJump);
// If Nan, 0 or -0 check for bailout
ma_bc_d(src, scratch, &skipCheck, Assembler::DoubleNotEqual, ShortJump);
// If high part is not zero, it is NaN or -0, so we bail.
{
ScratchRegisterScope scratch(asMasm());
moveFromDoubleHi(src, scratch);
branch32(Assembler::NotEqual, scratch, zero, fail);
}
// Input was zero, so return zero.
move32(Imm32(0), dest);
ma_b(&end, ShortJump);
bind(&skipCheck);
as_fadd_d(scratch, src, temp);
as_ftintrm_w_d(scratch, scratch);
moveFromDoubleLo(scratch, dest);
branch32(Assembler::Equal, dest, Imm32(INT_MIN), fail);
branch32(Assembler::Equal, dest, Imm32(INT_MAX), fail);
jump(&end);
// Input is negative, but isn't -0.
bind(&negative);
// Inputs in ]-0.5; 0] need to be added 0.5, other negative inputs need to
// be added the biggest double less than 0.5.
Label loadJoin;
loadConstantDouble(-0.5, scratch);
branchDouble(Assembler::DoubleLessThan, src, scratch, &loadJoin);
loadConstantDouble(0.5, temp);
bind(&loadJoin);
addDouble(src, temp);
// If input + 0.5 >= 0, input is a negative number >= -0.5 and the
// result is -0.
branchDouble(Assembler::DoubleGreaterThanOrEqual, temp, scratch, fail);
// Truncate and round toward zero.
// This is off-by-one for everything but integer-valued inputs.
as_ftintrm_w_d(scratch, temp);
moveFromDoubleLo(scratch, dest);
branch32(Assembler::Equal, dest, Imm32(INT_MIN), fail);
bind(&end);
}
void MacroAssembler::truncFloat32ToInt32(FloatRegister src, Register dest,
Label* fail) {
ScratchRegisterScope scratch(asMasm());
ScratchFloat32Scope fpscratch(asMasm());
Label notZero;
as_ftintrz_w_s(fpscratch, src);
as_movfcsr2gr(scratch);
moveFromFloat32(fpscratch, dest);
as_bstrpick_w(scratch, scratch, Assembler::CauseV, Assembler::CauseV);
ma_b(dest, zero, &notZero, Assembler::NotEqual, ShortJump);
{
// dest == zero
SecondScratchRegisterScope scratch2(asMasm());
moveFromFloat32(src, scratch2);
// Check if input is in ]-1; -0] range by checking the sign bit.
as_slt(scratch2, scratch2, zero);
as_add_d(scratch, scratch, scratch2);
}
bind(&notZero);
branch32(Assembler::NotEqual, Register(scratch), zero, fail);
}
void MacroAssembler::truncDoubleToInt32(FloatRegister src, Register dest,
Label* fail) {
ScratchRegisterScope scratch(asMasm());
ScratchFloat32Scope fpscratch(asMasm());
Label notZero;
as_ftintrz_w_d(fpscratch, src);
as_movfcsr2gr(scratch);
moveFromFloat32(fpscratch, dest);
as_bstrpick_w(scratch, scratch, Assembler::CauseV, Assembler::CauseV);
ma_b(dest, zero, &notZero, Assembler::NotEqual, ShortJump);
{
// dest == zero
SecondScratchRegisterScope scratch2(asMasm());
moveFromDoubleHi(src, scratch2);
// Check if input is in ]-1; -0] range by checking the sign bit.
as_slt(scratch2, scratch2, zero);
as_add_d(scratch, scratch, scratch2);
}
bind(&notZero);
branch32(Assembler::NotEqual, Register(scratch), zero, fail);
}
void MacroAssembler::nearbyIntDouble(RoundingMode mode, FloatRegister src,
FloatRegister dest) {
MOZ_CRASH("not supported on this platform");
}
void MacroAssembler::nearbyIntFloat32(RoundingMode mode, FloatRegister src,
FloatRegister dest) {
MOZ_CRASH("not supported on this platform");
}
void MacroAssembler::copySignDouble(FloatRegister lhs, FloatRegister rhs,
FloatRegister output) {
MOZ_CRASH("not supported on this platform");
}
void MacroAssemblerLOONG64Compat::move32(Imm32 imm, Register dest) {
ma_li(dest, imm);
}
void MacroAssemblerLOONG64Compat::move32(Register src, Register dest) {
as_slli_w(dest, src, 0);
}
void MacroAssemblerLOONG64Compat::movePtr(Register src, Register dest) {
as_or(dest, src, zero);
}
void MacroAssemblerLOONG64Compat::movePtr(ImmWord imm, Register dest) {
ma_li(dest, imm);
}
void MacroAssemblerLOONG64Compat::movePtr(ImmGCPtr imm, Register dest) {
ma_li(dest, imm);
}
void MacroAssemblerLOONG64Compat::movePtr(ImmPtr imm, Register dest) {
movePtr(ImmWord(uintptr_t(imm.value)), dest);
}
void MacroAssemblerLOONG64Compat::movePtr(wasm::SymbolicAddress imm,
Register dest) {
append(wasm::SymbolicAccess(CodeOffset(nextOffset().getOffset()), imm));
ma_liPatchable(dest, ImmWord(-1));
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load8ZeroExtend(
const Address& address, Register dest) {
return ma_load(dest, address, SizeByte, ZeroExtend);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load8ZeroExtend(
const BaseIndex& src, Register dest) {
return ma_load(dest, src, SizeByte, ZeroExtend);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load8SignExtend(
const Address& address, Register dest) {
return ma_load(dest, address, SizeByte, SignExtend);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load8SignExtend(
const BaseIndex& src, Register dest) {
return ma_load(dest, src, SizeByte, SignExtend);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load16ZeroExtend(
const Address& address, Register dest) {
return ma_load(dest, address, SizeHalfWord, ZeroExtend);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load16ZeroExtend(
const BaseIndex& src, Register dest) {
return ma_load(dest, src, SizeHalfWord, ZeroExtend);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load16SignExtend(
const Address& address, Register dest) {
return ma_load(dest, address, SizeHalfWord, SignExtend);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load16SignExtend(
const BaseIndex& src, Register dest) {
return ma_load(dest, src, SizeHalfWord, SignExtend);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load32(const Address& address,
Register dest) {
return ma_ld_w(dest, address);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::load32(const BaseIndex& address,
Register dest) {
Register base = address.base;
Register index = address.index;
int32_t offset = address.offset;
uint32_t shift = Imm32::ShiftOf(address.scale).value;
js::wasm::FaultingCodeOffset fco;
if (offset != 0) {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, Imm32(offset));
if (shift != 0) {
MOZ_ASSERT(shift <= 4);
as_alsl_d(scratch, index, scratch, shift - 1);
} else {
as_add_d(scratch, index, scratch);
}
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_ldx_w(dest, base, scratch);
} else if (shift != 0) {
ScratchRegisterScope scratch(asMasm());
as_slli_d(scratch, index, shift);
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_ldx_w(dest, base, scratch);
} else {
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_ldx_w(dest, base, index);
}
return fco;
}
void MacroAssemblerLOONG64Compat::load32(AbsoluteAddress address,
Register dest) {
ScratchRegisterScope scratch(asMasm());
movePtr(ImmPtr(address.addr), scratch);
load32(Address(scratch, 0), dest);
}
void MacroAssemblerLOONG64Compat::load32(wasm::SymbolicAddress address,
Register dest) {
ScratchRegisterScope scratch(asMasm());
movePtr(address, scratch);
load32(Address(scratch, 0), dest);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::loadPtr(const Address& address,
Register dest) {
return ma_ld_d(dest, address);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::loadPtr(const BaseIndex& src,
Register dest) {
Register base = src.base;
Register index = src.index;
int32_t offset = src.offset;
uint32_t shift = Imm32::ShiftOf(src.scale).value;
js::wasm::FaultingCodeOffset fco;
if (offset != 0) {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, Imm32(offset));
if (shift != 0) {
MOZ_ASSERT(shift <= 4);
as_alsl_d(scratch, index, scratch, shift - 1);
} else {
as_add_d(scratch, index, scratch);
}
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_ldx_d(dest, base, scratch);
} else if (shift != 0) {
ScratchRegisterScope scratch(asMasm());
as_slli_d(scratch, index, shift);
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_ldx_d(dest, base, scratch);
} else {
fco = js::wasm::FaultingCodeOffset(currentOffset());
as_ldx_d(dest, base, index);
}
return fco;
}
void MacroAssemblerLOONG64Compat::loadPtr(AbsoluteAddress address,
Register dest) {
ScratchRegisterScope scratch(asMasm());
movePtr(ImmPtr(address.addr), scratch);
loadPtr(Address(scratch, 0), dest);
}
void MacroAssemblerLOONG64Compat::loadPtr(wasm::SymbolicAddress address,
Register dest) {
ScratchRegisterScope scratch(asMasm());
movePtr(address, scratch);
loadPtr(Address(scratch, 0), dest);
}
void MacroAssemblerLOONG64Compat::loadPrivate(const Address& address,
Register dest) {
loadPtr(address, dest);
}
void MacroAssemblerLOONG64Compat::store8(Imm32 imm, const Address& address) {
SecondScratchRegisterScope scratch2(asMasm());
ma_li(scratch2, imm);
ma_store(scratch2, address, SizeByte);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::store8(Register src,
const Address& address) {
return ma_store(src, address, SizeByte);
}
void MacroAssemblerLOONG64Compat::store8(Imm32 imm, const BaseIndex& dest) {
ma_store(imm, dest, SizeByte);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::store8(Register src,
const BaseIndex& dest) {
return ma_store(src, dest, SizeByte);
}
void MacroAssemblerLOONG64Compat::store16(Imm32 imm, const Address& address) {
SecondScratchRegisterScope scratch2(asMasm());
ma_li(scratch2, imm);
ma_store(scratch2, address, SizeHalfWord);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::store16(
Register src, const Address& address) {
return ma_store(src, address, SizeHalfWord);
}
void MacroAssemblerLOONG64Compat::store16(Imm32 imm, const BaseIndex& dest) {
ma_store(imm, dest, SizeHalfWord);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::store16(
Register src, const BaseIndex& address) {
return ma_store(src, address, SizeHalfWord);
}
void MacroAssemblerLOONG64Compat::store32(Register src,
AbsoluteAddress address) {
ScratchRegisterScope scratch(asMasm());
movePtr(ImmPtr(address.addr), scratch);
store32(src, Address(scratch, 0));
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::store32(
Register src, const Address& address) {
return ma_store(src, address, SizeWord);
}
void MacroAssemblerLOONG64Compat::store32(Imm32 src, const Address& address) {
SecondScratchRegisterScope scratch2(asMasm());
move32(src, scratch2);
ma_store(scratch2, address, SizeWord);
}
void MacroAssemblerLOONG64Compat::store32(Imm32 imm, const BaseIndex& dest) {
ma_store(imm, dest, SizeWord);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::store32(Register src,
const BaseIndex& dest) {
return ma_store(src, dest, SizeWord);
}
template <typename T>
void MacroAssemblerLOONG64Compat::storePtr(ImmWord imm, T address) {
SecondScratchRegisterScope scratch2(asMasm());
ma_li(scratch2, imm);
ma_store(scratch2, address, SizeDouble);
}
template void MacroAssemblerLOONG64Compat::storePtr<Address>(ImmWord imm,
Address address);
template void MacroAssemblerLOONG64Compat::storePtr<BaseIndex>(
ImmWord imm, BaseIndex address);
template <typename T>
void MacroAssemblerLOONG64Compat::storePtr(ImmPtr imm, T address) {
storePtr(ImmWord(uintptr_t(imm.value)), address);
}
template void MacroAssemblerLOONG64Compat::storePtr<Address>(ImmPtr imm,
Address address);
template void MacroAssemblerLOONG64Compat::storePtr<BaseIndex>(
ImmPtr imm, BaseIndex address);
template <typename T>
void MacroAssemblerLOONG64Compat::storePtr(ImmGCPtr imm, T address) {
SecondScratchRegisterScope scratch2(asMasm());
movePtr(imm, scratch2);
storePtr(scratch2, address);
}
template void MacroAssemblerLOONG64Compat::storePtr<Address>(ImmGCPtr imm,
Address address);
template void MacroAssemblerLOONG64Compat::storePtr<BaseIndex>(
ImmGCPtr imm, BaseIndex address);
FaultingCodeOffset MacroAssemblerLOONG64Compat::storePtr(
Register src, const Address& address) {
return ma_st_d(src, address);
}
FaultingCodeOffset MacroAssemblerLOONG64Compat::storePtr(
Register src, const BaseIndex& address) {
Register base = address.base;
Register index = address.index;
int32_t offset = address.offset;
int32_t shift = Imm32::ShiftOf(address.scale).value;
FaultingCodeOffset fco;
if ((offset == 0) && (shift == 0)) {
fco = FaultingCodeOffset(currentOffset());
as_stx_d(src, base, index);
} else if (is_intN(offset, 12)) {
ScratchRegisterScope scratch(asMasm());
if (shift == 0) {
as_add_d(scratch, base, index);
} else {
as_alsl_d(scratch, index, base, shift - 1);
}
fco = FaultingCodeOffset(currentOffset());
as_st_d(src, scratch, offset);
} else {
ScratchRegisterScope scratch(asMasm());
ma_li(scratch, Imm32(offset));
if (shift == 0) {
as_add_d(scratch, scratch, index);
} else {
as_alsl_d(scratch, index, scratch, shift - 1);
}
fco = FaultingCodeOffset(currentOffset());
as_stx_d(src, base, scratch);
}
return fco;
}
void MacroAssemblerLOONG64Compat::storePtr(Register src, AbsoluteAddress dest) {
ScratchRegisterScope scratch(asMasm());
movePtr(ImmPtr(dest.addr), scratch);
storePtr(src, Address(scratch, 0));
}
void MacroAssemblerLOONG64Compat::testNullSet(Condition cond,
const ValueOperand& value,
Register dest) {
MOZ_ASSERT(cond == Equal || cond == NotEqual);
SecondScratchRegisterScope scratch2(asMasm());
splitTag(value, scratch2);
ma_cmp_set(dest, scratch2, ImmTag(JSVAL_TAG_NULL), cond);
}
void MacroAssemblerLOONG64Compat::testObjectSet(Condition cond,
const ValueOperand& value,
Register dest) {
MOZ_ASSERT(cond == Equal || cond == NotEqual);
SecondScratchRegisterScope scratch2(asMasm());
splitTag(value, scratch2);
ma_cmp_set(dest, scratch2, ImmTag(JSVAL_TAG_OBJECT), cond);
}
void MacroAssemblerLOONG64Compat::testUndefinedSet(Condition cond,
const ValueOperand& value,
Register dest) {
MOZ_ASSERT(cond == Equal || cond == NotEqual);
SecondScratchRegisterScope scratch2(asMasm());
splitTag(value, scratch2);
ma_cmp_set(dest, scratch2, ImmTag(JSVAL_TAG_UNDEFINED), cond);
}
void MacroAssemblerLOONG64Compat::unboxInt32(const ValueOperand& operand,
Register dest) {
as_slli_w(dest, operand.valueReg(), 0);
}
void MacroAssemblerLOONG64Compat::unboxInt32(Register src, Register dest) {
as_slli_w(dest, src, 0);
}
void MacroAssemblerLOONG64Compat::unboxInt32(const Address& src,
Register dest) {
load32(Address(src.base, src.offset), dest);
}
void MacroAssemblerLOONG64Compat::unboxInt32(const BaseIndex& src,
Register dest) {
SecondScratchRegisterScope scratch2(asMasm());
computeScaledAddress(src, scratch2);
load32(Address(scratch2, src.offset), dest);
}
void MacroAssemblerLOONG64Compat::unboxBoolean(const ValueOperand& operand,
Register dest) {
as_slli_w(dest, operand.valueReg(), 0);
}
void MacroAssemblerLOONG64Compat::unboxBoolean(Register src, Register dest) {
as_slli_w(dest, src, 0);
}
void MacroAssemblerLOONG64Compat::unboxBoolean(const Address& src,
Register dest) {
ma_ld_w(dest, src);
}
void MacroAssemblerLOONG64Compat::unboxBoolean(const BaseIndex& src,
Register dest) {
SecondScratchRegisterScope scratch2(asMasm());
computeScaledAddress(src, scratch2);
ma_ld_w(dest, Address(scratch2, src.offset));
}
void MacroAssemblerLOONG64Compat::unboxDouble(const ValueOperand& operand,
FloatRegister dest) {
as_movgr2fr_d(dest, operand.valueReg());
}
void MacroAssemblerLOONG64Compat::unboxDouble(const Address& src,
FloatRegister dest) {
ma_fld_d(dest, Address(src.base, src.offset));
}
void MacroAssemblerLOONG64Compat::unboxDouble(const BaseIndex& src,
FloatRegister dest) {
SecondScratchRegisterScope scratch2(asMasm());
loadPtr(src, scratch2);
unboxDouble(ValueOperand(scratch2), dest);
}
void MacroAssemblerLOONG64Compat::unboxString(const ValueOperand& operand,
Register dest) {
unboxNonDouble(operand, dest, JSVAL_TYPE_STRING);
}
void MacroAssemblerLOONG64Compat::unboxString(Register src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_STRING);
}
void MacroAssemblerLOONG64Compat::unboxString(const Address& src,
Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_STRING);
}
void MacroAssemblerLOONG64Compat::unboxSymbol(const ValueOperand& operand,
Register dest) {
unboxNonDouble(operand, dest, JSVAL_TYPE_SYMBOL);
}
void MacroAssemblerLOONG64Compat::unboxSymbol(Register src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL);
}
void MacroAssemblerLOONG64Compat::unboxSymbol(const Address& src,
Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL);
}
void MacroAssemblerLOONG64Compat::unboxBigInt(const ValueOperand& operand,
Register dest) {
unboxNonDouble(operand, dest, JSVAL_TYPE_BIGINT);
}
void MacroAssemblerLOONG64Compat::unboxBigInt(Register src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT);
}
void MacroAssemblerLOONG64Compat::unboxBigInt(const Address& src,
Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT);
}
void MacroAssemblerLOONG64Compat::unboxObject(const ValueOperand& src,
Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void MacroAssemblerLOONG64Compat::unboxObject(Register src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void MacroAssemblerLOONG64Compat::unboxObject(const Address& src,
Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void MacroAssemblerLOONG64Compat::unboxValue(const ValueOperand& src,
AnyRegister dest,
JSValueType type) {
if (dest.isFloat()) {
Label notInt32, end;
asMasm().branchTestInt32(Assembler::NotEqual, src, &notInt32);
convertInt32ToDouble(src.valueReg(), dest.fpu());
ma_b(&end, ShortJump);
bind(&notInt32);
unboxDouble(src, dest.fpu());
bind(&end);
} else {
unboxNonDouble(src, dest.gpr(), type);
}
}
void MacroAssemblerLOONG64Compat::boxDouble(FloatRegister src,
const ValueOperand& dest,
FloatRegister) {
as_movfr2gr_d(dest.valueReg(), src);
}
void MacroAssemblerLOONG64Compat::boxNonDouble(JSValueType type, Register src,
const ValueOperand& dest) {
boxValue(type, src, dest.valueReg());
}
void MacroAssemblerLOONG64Compat::boolValueToDouble(const ValueOperand& operand,
FloatRegister dest) {
ScratchRegisterScope scratch(asMasm());
convertBoolToInt32(operand.valueReg(), scratch);
convertInt32ToDouble(scratch, dest);
}
void MacroAssemblerLOONG64Compat::int32ValueToDouble(
const ValueOperand& operand, FloatRegister dest) {
convertInt32ToDouble(operand.valueReg(), dest);
}
void MacroAssemblerLOONG64Compat::boolValueToFloat32(
const ValueOperand& operand, FloatRegister dest) {
ScratchRegisterScope scratch(asMasm());
convertBoolToInt32(operand.valueReg(), scratch);
convertInt32ToFloat32(scratch, dest);
}
void MacroAssemblerLOONG64Compat::int32ValueToFloat32(
const ValueOperand& operand, FloatRegister dest) {
convertInt32ToFloat32(operand.valueReg(), dest);
}
void MacroAssemblerLOONG64Compat::loadConstantFloat32(float f,
FloatRegister dest) {
ma_lis(dest, f);
}
void MacroAssemblerLOONG64Compat::loadInt32OrDouble(const Address& src,
FloatRegister dest) {
SecondScratchRegisterScope scratch2(asMasm());
Label end;
// If it's an int, convert it to double.
loadPtr(Address(src.base, src.offset), scratch2);
as_movgr2fr_d(dest, scratch2);
as_srli_d(scratch2, scratch2, JSVAL_TAG_SHIFT);
asMasm().branchTestInt32(Assembler::NotEqual, scratch2, &end);
as_ffint_d_w(dest, dest);
bind(&end);
}
void MacroAssemblerLOONG64Compat::loadInt32OrDouble(const BaseIndex& addr,
FloatRegister dest) {
SecondScratchRegisterScope scratch2(asMasm());
Label end;
// If it's an int, convert it to double.
computeScaledAddress(addr, scratch2);
// Since we only have one scratch, we need to stomp over it with the tag.
loadPtr(Address(scratch2, 0), scratch2);
as_movgr2fr_d(dest, scratch2);
as_srli_d(scratch2, scratch2, JSVAL_TAG_SHIFT);
asMasm().branchTestInt32(Assembler::NotEqual, scratch2, &end);
as_ffint_d_w(dest, dest);
bind(&end);
}
void MacroAssemblerLOONG64Compat::loadConstantDouble(double dp,
FloatRegister dest) {
ma_lid(dest, dp);
}
Register MacroAssemblerLOONG64Compat::extractObject(const Address& address,
Register scratch) {
loadPtr(Address(address.base, address.offset), scratch);
as_bstrpick_d(scratch, scratch, JSVAL_TAG_SHIFT - 1, 0);
return scratch;
}
Register MacroAssemblerLOONG64Compat::extractTag(const Address& address,
Register scratch) {
loadPtr(Address(address.base, address.offset), scratch);
as_bstrpick_d(scratch, scratch, 63, JSVAL_TAG_SHIFT);
return scratch;
}
Register MacroAssemblerLOONG64Compat::extractTag(const BaseIndex& address,
Register scratch) {
computeScaledAddress(address, scratch);
return extractTag(Address(scratch, address.offset), scratch);
}
/////////////////////////////////////////////////////////////////
// X86/X64-common/ARM/LoongArch interface.
/////////////////////////////////////////////////////////////////
void MacroAssemblerLOONG64Compat::storeValue(ValueOperand val,
const Address& dest) {
storePtr(val.valueReg(), Address(dest.base, dest.offset));
}
void MacroAssemblerLOONG64Compat::storeValue(ValueOperand val,
const BaseIndex& dest) {
storePtr(val.valueReg(), dest);
}
void MacroAssemblerLOONG64Compat::storeValue(JSValueType type, Register reg,
Address dest) {
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT(dest.base != scratch2);
tagValue(type, reg, ValueOperand(scratch2));
storePtr(scratch2, dest);
}
void MacroAssemblerLOONG64Compat::storeValue(JSValueType type, Register reg,
BaseIndex dest) {
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT(dest.base != scratch2);
tagValue(type, reg, ValueOperand(scratch2));
storePtr(scratch2, dest);
}
void MacroAssemblerLOONG64Compat::storeValue(const Value& val, Address dest) {
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT(dest.base != scratch2);
if (val.isGCThing()) {
writeDataRelocation(val);
movWithPatch(ImmWord(val.asRawBits()), scratch2);
} else {
ma_li(scratch2, ImmWord(val.asRawBits()));
}
storePtr(scratch2, dest);
}
void MacroAssemblerLOONG64Compat::storeValue(const Value& val, BaseIndex dest) {
SecondScratchRegisterScope scratch2(asMasm());
MOZ_ASSERT(dest.base != scratch2);
if (val.isGCThing()) {
writeDataRelocation(val);
movWithPatch(ImmWord(val.asRawBits()), scratch2);
} else {
ma_li(scratch2, ImmWord(val.asRawBits()));
}
storePtr(scratch2, dest);
}
void MacroAssemblerLOONG64Compat::loadValue(Address src, ValueOperand val) {
loadPtr(src, val.valueReg());
}
void MacroAssemblerLOONG64Compat::loadValue(const BaseIndex& src,
ValueOperand val) {
loadPtr(src, val.valueReg());
}
void MacroAssemblerLOONG64Compat::tagValue(JSValueType type, Register payload,
ValueOperand dest) {
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(dest.valueReg() != scratch);
if (payload == dest.valueReg()) {
as_or(scratch, payload, zero);
payload = scratch;
}
ma_li(dest.valueReg(), ImmWord(JSVAL_TYPE_TO_SHIFTED_TAG(type)));
if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) {
as_bstrins_d(dest.valueReg(), payload, 31, 0);
} else {
as_bstrins_d(dest.valueReg(), payload, JSVAL_TAG_SHIFT - 1, 0);
}
}
void MacroAssemblerLOONG64Compat::pushValue(ValueOperand val) {
push(val.valueReg());
}
void MacroAssemblerLOONG64Compat::pushValue(const Address& addr) { push(addr); }
void MacroAssemblerLOONG64Compat::popValue(ValueOperand val) {
pop(val.valueReg());
}
void MacroAssemblerLOONG64Compat::breakpoint(uint32_t value) {
as_break(value);
}
void MacroAssemblerLOONG64Compat::handleFailureWithHandlerTail(
Label* profilerExitTail, Label* bailoutTail) {
// Reserve space for exception information.
int size = (sizeof(ResumeFromException) + ABIStackAlignment) &
~(ABIStackAlignment - 1);
asMasm().subPtr(Imm32(size), StackPointer);
mov(StackPointer, a0); // Use a0 since it is a first function argument
// Call the handler.
using Fn = void (*)(ResumeFromException* rfe);
asMasm().setupUnalignedABICall(a1);
asMasm().passABIArg(a0);
asMasm().callWithABI<Fn, HandleException>(
ABIType::General, CheckUnsafeCallWithABI::DontCheckHasExitFrame);
Label entryFrame;
Label catch_;
Label finally;
Label returnBaseline;
Label returnIon;
Label bailout;
Label wasm;
Label wasmCatch;
// Already clobbered a0, so use it...
load32(Address(StackPointer, ResumeFromException::offsetOfKind()), a0);
asMasm().branch32(Assembler::Equal, a0,
Imm32(ExceptionResumeKind::EntryFrame), &entryFrame);
asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::Catch),
&catch_);
asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::Finally),
&finally);
asMasm().branch32(Assembler::Equal, a0,
Imm32(ExceptionResumeKind::ForcedReturnBaseline),
&returnBaseline);
asMasm().branch32(Assembler::Equal, a0,
Imm32(ExceptionResumeKind::ForcedReturnIon), &returnIon);
asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::Bailout),
&bailout);
asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::Wasm),
&wasm);
asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::WasmCatch),
&wasmCatch);
breakpoint(); // Invalid kind.
// No exception handler. Load the error value, restore state and return from
// the entry frame.
bind(&entryFrame);
asMasm().moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()),
FramePointer);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()),
StackPointer);
// We're going to be returning by the ion calling convention
ma_pop(ra);
as_jirl(zero, ra, BOffImm16(0));
// If we found a catch handler, this must be a baseline frame. Restore
// state and jump to the catch block.
bind(&catch_);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfTarget()), a0);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()),
FramePointer);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()),
StackPointer);
jump(a0);
// If we found a finally block, this must be a baseline frame. Push three
// values expected by the finally block: the exception, the exception stack,
// and BooleanValue(true).
bind(&finally);
ValueOperand exception = ValueOperand(a1);
loadValue(Address(sp, ResumeFromException::offsetOfException()), exception);
ValueOperand exceptionStack = ValueOperand(a2);
loadValue(Address(sp, ResumeFromException::offsetOfExceptionStack()),
exceptionStack);
loadPtr(Address(sp, ResumeFromException::offsetOfTarget()), a0);
loadPtr(Address(sp, ResumeFromException::offsetOfFramePointer()),
FramePointer);
loadPtr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp);
pushValue(exception);
pushValue(exceptionStack);
pushValue(BooleanValue(true));
jump(a0);
// Return BaselineFrame->returnValue() to the caller.
// Used in debug mode and for GeneratorReturn.
Label profilingInstrumentation;
bind(&returnBaseline);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()),
FramePointer);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()),
StackPointer);
loadValue(Address(FramePointer, BaselineFrame::reverseOffsetOfReturnValue()),
JSReturnOperand);
jump(&profilingInstrumentation);
// Return the given value to the caller.
bind(&returnIon);
loadValue(Address(StackPointer, ResumeFromException::offsetOfException()),
JSReturnOperand);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()),
FramePointer);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()),
StackPointer);
// If profiling is enabled, then update the lastProfilingFrame to refer to
// caller frame before returning. This code is shared by ForcedReturnIon
// and ForcedReturnBaseline.
bind(&profilingInstrumentation);
{
Label skipProfilingInstrumentation;
// Test if profiler enabled.
AbsoluteAddress addressOfEnabled(
asMasm().runtime()->geckoProfiler().addressOfEnabled());
asMasm().branch32(Assembler::Equal, addressOfEnabled, Imm32(0),
&skipProfilingInstrumentation);
jump(profilerExitTail);
bind(&skipProfilingInstrumentation);
}
as_or(StackPointer, FramePointer, zero);
pop(FramePointer);
ret();
// If we are bailing out to baseline to handle an exception, jump to
// the bailout tail stub. Load 1 (true) in ReturnReg to indicate success.
bind(&bailout);
loadPtr(Address(sp, ResumeFromException::offsetOfBailoutInfo()), a2);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()),
StackPointer);
ma_li(ReturnReg, Imm32(1));
jump(bailoutTail);
// If we are throwing and the innermost frame was a wasm frame, reset SP and
// FP; SP is pointing to the unwound return address to the wasm entry, so
// we can just ret().
bind(&wasm);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()),
FramePointer);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()),
StackPointer);
ma_li(InstanceReg, ImmWord(wasm::FailInstanceReg));
ret();
// Found a wasm catch handler, restore state and jump to it.
bind(&wasmCatch);
loadPtr(Address(sp, ResumeFromException::offsetOfTarget()), a1);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()),
FramePointer);
loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()),
StackPointer);
jump(a1);
}
CodeOffset MacroAssemblerLOONG64Compat::toggledJump(Label* label) {
CodeOffset ret(nextOffset().getOffset());
ma_b(label);
return ret;
}
CodeOffset MacroAssemblerLOONG64Compat::toggledCall(JitCode* target,
bool enabled) {
ScratchRegisterScope scratch(asMasm());
BufferOffset bo = nextOffset();
CodeOffset offset(bo.getOffset()); // first instruction location,not changed.
addPendingJump(bo, ImmPtr(target->raw()), RelocationKind::JITCODE);
ma_liPatchable(scratch, ImmPtr(target->raw()));
if (enabled) {
as_jirl(ra, scratch, BOffImm16(0));
} else {
as_nop();
}
MOZ_ASSERT_IF(!oom(), nextOffset().getOffset() - offset.offset() ==
ToggledCallSize(nullptr));
return offset; // location of first instruction of call instr sequence.
}
void MacroAssembler::shiftIndex32AndAdd(Register indexTemp32, int shift,
Register pointer) {
if (IsShiftInScaleRange(shift)) {
computeEffectiveAddress(
BaseIndex(pointer, indexTemp32, ShiftToScale(shift)), pointer);
return;
}
lshift32(Imm32(shift), indexTemp32);
addPtr(indexTemp32, pointer);
}
#ifdef ENABLE_WASM_TAIL_CALLS
void MacroAssembler::wasmMarkSlowCall() { mov(ra, ra); }
const int32_t SlowCallMarker = 0x03800021; // ori ra, ra, 0
void MacroAssembler::wasmCheckSlowCallsite(Register ra_, Label* notSlow,
Register temp1, Register temp2) {
MOZ_ASSERT(ra_ != temp2);
load32(Address(ra_, 0), temp2);
branch32(Assembler::NotEqual, temp2, Imm32(SlowCallMarker), notSlow);
}
#endif // ENABLE_WASM_TAIL_CALLS
//}}} check_macroassembler_style
} // namespace jit
} // namespace js