Source code

Revision control

Other Tools

// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef JS_SIMULATOR_ARM64
#include <cmath>
#include "jit/arm64/vixl/Simulator-vixl.h"
namespace vixl {
template<> double Simulator::FPDefaultNaN<double>() {
return kFP64DefaultNaN;
}
template<> float Simulator::FPDefaultNaN<float>() {
return kFP32DefaultNaN;
}
double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) {
if (src >= 0) {
return UFixedToDouble(src, fbits, round);
} else {
// This works for all negative values, including INT64_MIN.
return -UFixedToDouble(-src, fbits, round);
}
}
double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) {
// An input of 0 is a special case because the result is effectively
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
if (src == 0) {
return 0.0;
}
// Calculate the exponent. The highest significant bit will have the value
// 2^exponent.
const int highest_significant_bit = 63 - CountLeadingZeros(src);
const int64_t exponent = highest_significant_bit - fbits;
return FPRoundToDouble(0, exponent, src, round);
}
float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) {
if (src >= 0) {
return UFixedToFloat(src, fbits, round);
} else {
// This works for all negative values, including INT64_MIN.
return -UFixedToFloat(-src, fbits, round);
}
}
float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
// An input of 0 is a special case because the result is effectively
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
if (src == 0) {
return 0.0f;
}
// Calculate the exponent. The highest significant bit will have the value
// 2^exponent.
const int highest_significant_bit = 63 - CountLeadingZeros(src);
const int32_t exponent = highest_significant_bit - fbits;
return FPRoundToFloat(0, exponent, src, round);
}
void Simulator::ld1(VectorFormat vform,
LogicVRegister dst,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, 16))
return;
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.ReadUintFromMem(vform, i, addr);
addr += LaneSizeInBytesFromFormat(vform);
}
}
void Simulator::ld1(VectorFormat vform,
LogicVRegister dst,
int index,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)))
return;
dst.ReadUintFromMem(vform, index, addr);
}
void Simulator::ld1r(VectorFormat vform,
LogicVRegister dst,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)))
return;
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.ReadUintFromMem(vform, i, addr);
}
}
void Simulator::ld2(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
uint64_t addr1) {
if (handle_wasm_seg_fault(addr1, 16*2))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
int esize = LaneSizeInBytesFromFormat(vform);
uint64_t addr2 = addr1 + esize;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst1.ReadUintFromMem(vform, i, addr1);
dst2.ReadUintFromMem(vform, i, addr2);
addr1 += 2 * esize;
addr2 += 2 * esize;
}
}
void Simulator::ld2(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
int index,
uint64_t addr1) {
if (handle_wasm_seg_fault(addr1, LaneSizeInBytesFromFormat(vform)*2))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform);
dst1.ReadUintFromMem(vform, index, addr1);
dst2.ReadUintFromMem(vform, index, addr2);
}
void Simulator::ld2r(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)*2))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst1.ReadUintFromMem(vform, i, addr);
dst2.ReadUintFromMem(vform, i, addr2);
}
}
void Simulator::ld3(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
uint64_t addr1) {
if (handle_wasm_seg_fault(addr1, 16*3))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
dst3.ClearForWrite(vform);
int esize = LaneSizeInBytesFromFormat(vform);
uint64_t addr2 = addr1 + esize;
uint64_t addr3 = addr2 + esize;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst1.ReadUintFromMem(vform, i, addr1);
dst2.ReadUintFromMem(vform, i, addr2);
dst3.ReadUintFromMem(vform, i, addr3);
addr1 += 3 * esize;
addr2 += 3 * esize;
addr3 += 3 * esize;
}
}
void Simulator::ld3(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
int index,
uint64_t addr1) {
if (handle_wasm_seg_fault(addr1, LaneSizeInBytesFromFormat(vform)*3))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
dst3.ClearForWrite(vform);
uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform);
uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform);
dst1.ReadUintFromMem(vform, index, addr1);
dst2.ReadUintFromMem(vform, index, addr2);
dst3.ReadUintFromMem(vform, index, addr3);
}
void Simulator::ld3r(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)*3))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
dst3.ClearForWrite(vform);
uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform);
uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst1.ReadUintFromMem(vform, i, addr);
dst2.ReadUintFromMem(vform, i, addr2);
dst3.ReadUintFromMem(vform, i, addr3);
}
}
void Simulator::ld4(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
LogicVRegister dst4,
uint64_t addr1) {
if (handle_wasm_seg_fault(addr1, 16*4))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
dst3.ClearForWrite(vform);
dst4.ClearForWrite(vform);
int esize = LaneSizeInBytesFromFormat(vform);
uint64_t addr2 = addr1 + esize;
uint64_t addr3 = addr2 + esize;
uint64_t addr4 = addr3 + esize;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst1.ReadUintFromMem(vform, i, addr1);
dst2.ReadUintFromMem(vform, i, addr2);
dst3.ReadUintFromMem(vform, i, addr3);
dst4.ReadUintFromMem(vform, i, addr4);
addr1 += 4 * esize;
addr2 += 4 * esize;
addr3 += 4 * esize;
addr4 += 4 * esize;
}
}
void Simulator::ld4(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
LogicVRegister dst4,
int index,
uint64_t addr1) {
if (handle_wasm_seg_fault(addr1, LaneSizeInBytesFromFormat(vform)*4))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
dst3.ClearForWrite(vform);
dst4.ClearForWrite(vform);
uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform);
uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform);
uint64_t addr4 = addr3 + LaneSizeInBytesFromFormat(vform);
dst1.ReadUintFromMem(vform, index, addr1);
dst2.ReadUintFromMem(vform, index, addr2);
dst3.ReadUintFromMem(vform, index, addr3);
dst4.ReadUintFromMem(vform, index, addr4);
}
void Simulator::ld4r(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
LogicVRegister dst4,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)*4))
return;
dst1.ClearForWrite(vform);
dst2.ClearForWrite(vform);
dst3.ClearForWrite(vform);
dst4.ClearForWrite(vform);
uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform);
uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform);
uint64_t addr4 = addr3 + LaneSizeInBytesFromFormat(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst1.ReadUintFromMem(vform, i, addr);
dst2.ReadUintFromMem(vform, i, addr2);
dst3.ReadUintFromMem(vform, i, addr3);
dst4.ReadUintFromMem(vform, i, addr4);
}
}
void Simulator::st1(VectorFormat vform,
LogicVRegister src,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, 16))
return;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
src.WriteUintToMem(vform, i, addr);
addr += LaneSizeInBytesFromFormat(vform);
}
}
void Simulator::st1(VectorFormat vform,
LogicVRegister src,
int index,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)))
return;
src.WriteUintToMem(vform, index, addr);
}
void Simulator::st2(VectorFormat vform,
LogicVRegister dst,
LogicVRegister dst2,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, 16*2))
return;
int esize = LaneSizeInBytesFromFormat(vform);
uint64_t addr2 = addr + esize;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.WriteUintToMem(vform, i, addr);
dst2.WriteUintToMem(vform, i, addr2);
addr += 2 * esize;
addr2 += 2 * esize;
}
}
void Simulator::st2(VectorFormat vform,
LogicVRegister dst,
LogicVRegister dst2,
int index,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)*2))
return;
int esize = LaneSizeInBytesFromFormat(vform);
dst.WriteUintToMem(vform, index, addr);
dst2.WriteUintToMem(vform, index, addr + 1 * esize);
}
void Simulator::st3(VectorFormat vform,
LogicVRegister dst,
LogicVRegister dst2,
LogicVRegister dst3,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, 16*3))
return;
int esize = LaneSizeInBytesFromFormat(vform);
uint64_t addr2 = addr + esize;
uint64_t addr3 = addr2 + esize;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.WriteUintToMem(vform, i, addr);
dst2.WriteUintToMem(vform, i, addr2);
dst3.WriteUintToMem(vform, i, addr3);
addr += 3 * esize;
addr2 += 3 * esize;
addr3 += 3 * esize;
}
}
void Simulator::st3(VectorFormat vform,
LogicVRegister dst,
LogicVRegister dst2,
LogicVRegister dst3,
int index,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)*3))
return;
int esize = LaneSizeInBytesFromFormat(vform);
dst.WriteUintToMem(vform, index, addr);
dst2.WriteUintToMem(vform, index, addr + 1 * esize);
dst3.WriteUintToMem(vform, index, addr + 2 * esize);
}
void Simulator::st4(VectorFormat vform,
LogicVRegister dst,
LogicVRegister dst2,
LogicVRegister dst3,
LogicVRegister dst4,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, 16*4))
return;
int esize = LaneSizeInBytesFromFormat(vform);
uint64_t addr2 = addr + esize;
uint64_t addr3 = addr2 + esize;
uint64_t addr4 = addr3 + esize;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.WriteUintToMem(vform, i, addr);
dst2.WriteUintToMem(vform, i, addr2);
dst3.WriteUintToMem(vform, i, addr3);
dst4.WriteUintToMem(vform, i, addr4);
addr += 4 * esize;
addr2 += 4 * esize;
addr3 += 4 * esize;
addr4 += 4 * esize;
}
}
void Simulator::st4(VectorFormat vform,
LogicVRegister dst,
LogicVRegister dst2,
LogicVRegister dst3,
LogicVRegister dst4,
int index,
uint64_t addr) {
if (handle_wasm_seg_fault(addr, LaneSizeInBytesFromFormat(vform)*4))
return;
int esize = LaneSizeInBytesFromFormat(vform);
dst.WriteUintToMem(vform, index, addr);
dst2.WriteUintToMem(vform, index, addr + 1 * esize);
dst3.WriteUintToMem(vform, index, addr + 2 * esize);
dst4.WriteUintToMem(vform, index, addr + 3 * esize);
}
LogicVRegister Simulator::cmp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
Condition cond) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
int64_t sa = src1.Int(vform, i);
int64_t sb = src2.Int(vform, i);
uint64_t ua = src1.Uint(vform, i);
uint64_t ub = src2.Uint(vform, i);
bool result = false;
switch (cond) {
case eq: result = (ua == ub); break;
case ge: result = (sa >= sb); break;
case gt: result = (sa > sb) ; break;
case hi: result = (ua > ub) ; break;
case hs: result = (ua >= ub); break;
case lt: result = (sa < sb) ; break;
case le: result = (sa <= sb); break;
default: VIXL_UNREACHABLE(); break;
}
dst.SetUint(vform, i, result ? MaxUintFromFormat(vform) : 0);
}
return dst;
}
LogicVRegister Simulator::cmp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
int imm,
Condition cond) {
SimVRegister temp;
LogicVRegister imm_reg = dup_immediate(vform, temp, imm);
return cmp(vform, dst, src1, imm_reg, cond);
}
LogicVRegister Simulator::cmptst(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
uint64_t ua = src1.Uint(vform, i);
uint64_t ub = src2.Uint(vform, i);
dst.SetUint(vform, i, ((ua & ub) != 0) ? MaxUintFromFormat(vform) : 0);
}
return dst;
}
LogicVRegister Simulator::add(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
// TODO(all): consider assigning the result of LaneCountFromFormat to a local.
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
// Test for unsigned saturation.
uint64_t ua = src1.UintLeftJustified(vform, i);
uint64_t ub = src2.UintLeftJustified(vform, i);
uint64_t ur = ua + ub;
if (ur < ua) {
dst.SetUnsignedSat(i, true);
}
// Test for signed saturation.
int64_t sa = src1.IntLeftJustified(vform, i);
int64_t sb = src2.IntLeftJustified(vform, i);
int64_t sr = sa + sb;
// If the signs of the operands are the same, but different from the result,
// there was an overflow.
if (((sa >= 0) == (sb >= 0)) && ((sa >= 0) != (sr >= 0))) {
dst.SetSignedSat(i, sa >= 0);
}
dst.SetInt(vform, i, src1.Int(vform, i) + src2.Int(vform, i));
}
return dst;
}
LogicVRegister Simulator::addp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
SimVRegister temp1, temp2;
uzp1(vform, temp1, src1, src2);
uzp2(vform, temp2, src1, src2);
add(vform, dst, temp1, temp2);
return dst;
}
LogicVRegister Simulator::mla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
SimVRegister temp;
mul(vform, temp, src1, src2);
add(vform, dst, dst, temp);
return dst;
}
LogicVRegister Simulator::mls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
SimVRegister temp;
mul(vform, temp, src1, src2);
sub(vform, dst, dst, temp);
return dst;
}
LogicVRegister Simulator::mul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, src1.Uint(vform, i) * src2.Uint(vform, i));
}
return dst;
}
LogicVRegister Simulator::mul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform = VectorFormatFillQ(vform);
return mul(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::mla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform = VectorFormatFillQ(vform);
return mla(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::mls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform = VectorFormatFillQ(vform);
return mls(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::smull(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return smull(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::smull2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return smull2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::umull(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return umull(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::umull2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return umull2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::smlal(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return smlal(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::smlal2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return smlal2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::umlal(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return umlal(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::umlal2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return umlal2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::smlsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return smlsl(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::smlsl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return smlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::umlsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return umlsl(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::umlsl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return umlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::sqdmull(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return sqdmull(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::sqdmull2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return sqdmull2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::sqdmlal(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return sqdmlal(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::sqdmlal2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return sqdmlal2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::sqdmlsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return sqdmlsl(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::sqdmlsl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform =
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
return sqdmlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::sqdmulh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform = VectorFormatFillQ(vform);
return sqdmulh(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
LogicVRegister Simulator::sqrdmulh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
SimVRegister temp;
VectorFormat indexform = VectorFormatFillQ(vform);
return sqrdmulh(vform, dst, src1, dup_element(indexform, temp, src2, index));
}
uint16_t Simulator::PolynomialMult(uint8_t op1, uint8_t op2) {
uint16_t result = 0;
uint16_t extended_op2 = op2;
for (int i = 0; i < 8; ++i) {
if ((op1 >> i) & 1) {
result = result ^ (extended_op2 << i);
}
}
return result;
}
LogicVRegister Simulator::pmul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i,
PolynomialMult(src1.Uint(vform, i), src2.Uint(vform, i)));
}
return dst;
}
LogicVRegister Simulator::pmull(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
VectorFormat vform_src = VectorFormatHalfWidth(vform);
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, PolynomialMult(src1.Uint(vform_src, i),
src2.Uint(vform_src, i)));
}
return dst;
}
LogicVRegister Simulator::pmull2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
VectorFormat vform_src = VectorFormatHalfWidthDoubleLanes(vform);
dst.ClearForWrite(vform);
int lane_count = LaneCountFromFormat(vform);
for (int i = 0; i < lane_count; i++) {
dst.SetUint(vform, i, PolynomialMult(src1.Uint(vform_src, lane_count + i),
src2.Uint(vform_src, lane_count + i)));
}
return dst;
}
LogicVRegister Simulator::sub(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
// Test for unsigned saturation.
if (src2.Uint(vform, i) > src1.Uint(vform, i)) {
dst.SetUnsignedSat(i, false);
}
// Test for signed saturation.
int64_t sa = src1.IntLeftJustified(vform, i);
int64_t sb = src2.IntLeftJustified(vform, i);
int64_t sr = sa - sb;
// If the signs of the operands are different, and the sign of the first
// operand doesn't match the result, there was an overflow.
if (((sa >= 0) != (sb >= 0)) && ((sa >= 0) != (sr >= 0))) {
dst.SetSignedSat(i, sr < 0);
}
dst.SetInt(vform, i, src1.Int(vform, i) - src2.Int(vform, i));
}
return dst;
}
LogicVRegister Simulator::and_(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, src1.Uint(vform, i) & src2.Uint(vform, i));
}
return dst;
}
LogicVRegister Simulator::orr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, src1.Uint(vform, i) | src2.Uint(vform, i));
}
return dst;
}
LogicVRegister Simulator::orn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, src1.Uint(vform, i) | ~src2.Uint(vform, i));
}
return dst;
}
LogicVRegister Simulator::eor(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, src1.Uint(vform, i) ^ src2.Uint(vform, i));
}
return dst;
}
LogicVRegister Simulator::bic(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, src1.Uint(vform, i) & ~src2.Uint(vform, i));
}
return dst;
}
LogicVRegister Simulator::bic(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
uint64_t imm) {
uint64_t result[16];
int laneCount = LaneCountFromFormat(vform);
for (int i = 0; i < laneCount; ++i) {
result[i] = src.Uint(vform, i) & ~imm;
}
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, result[i]);
}
return dst;
}
LogicVRegister Simulator::bif(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
uint64_t operand1 = dst.Uint(vform, i);
uint64_t operand2 = ~src2.Uint(vform, i);
uint64_t operand3 = src1.Uint(vform, i);
uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2);
dst.SetUint(vform, i, result);
}
return dst;
}
LogicVRegister Simulator::bit(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
uint64_t operand1 = dst.Uint(vform, i);
uint64_t operand2 = src2.Uint(vform, i);
uint64_t operand3 = src1.Uint(vform, i);
uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2);
dst.SetUint(vform, i, result);
}
return dst;
}
LogicVRegister Simulator::bsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
uint64_t operand1 = src2.Uint(vform, i);
uint64_t operand2 = dst.Uint(vform, i);
uint64_t operand3 = src1.Uint(vform, i);
uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2);
dst.SetUint(vform, i, result);
}
return dst;
}
LogicVRegister Simulator::sminmax(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool max) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
int64_t src1_val = src1.Int(vform, i);
int64_t src2_val = src2.Int(vform, i);
int64_t dst_val;
if (max == true) {
dst_val = (src1_val > src2_val) ? src1_val : src2_val;
} else {
dst_val = (src1_val < src2_val) ? src1_val : src2_val;
}
dst.SetInt(vform, i, dst_val);
}
return dst;
}
LogicVRegister Simulator::smax(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
return sminmax(vform, dst, src1, src2, true);
}
LogicVRegister Simulator::smin(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
return sminmax(vform, dst, src1, src2, false);
}
LogicVRegister Simulator::sminmaxp(VectorFormat vform,
LogicVRegister dst,
int dst_index,
const LogicVRegister& src,
bool max) {
for (int i = 0; i < LaneCountFromFormat(vform); i += 2) {
int64_t src1_val = src.Int(vform, i);
int64_t src2_val = src.Int(vform, i + 1);
int64_t dst_val;
if (max == true) {
dst_val = (src1_val > src2_val) ? src1_val : src2_val;
} else {
dst_val = (src1_val < src2_val) ? src1_val : src2_val;
}
dst.SetInt(vform, dst_index + (i >> 1), dst_val);
}
return dst;
}
LogicVRegister Simulator::smaxp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
sminmaxp(vform, dst, 0, src1, true);
sminmaxp(vform, dst, LaneCountFromFormat(vform) >> 1, src2, true);
return dst;
}
LogicVRegister Simulator::sminp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
sminmaxp(vform, dst, 0, src1, false);
sminmaxp(vform, dst, LaneCountFromFormat(vform) >> 1, src2, false);
return dst;
}
LogicVRegister Simulator::addp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
VIXL_ASSERT(vform == kFormatD);
int64_t dst_val = src.Int(kFormat2D, 0) + src.Int(kFormat2D, 1);
dst.ClearForWrite(vform);
dst.SetInt(vform, 0, dst_val);
return dst;
}
LogicVRegister Simulator::addv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
VectorFormat vform_dst
= ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
int64_t dst_val = 0;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst_val += src.Int(vform, i);
}
dst.ClearForWrite(vform_dst);
dst.SetInt(vform_dst, 0, dst_val);
return dst;
}
LogicVRegister Simulator::saddlv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
VectorFormat vform_dst
= ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform) * 2);
int64_t dst_val = 0;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst_val += src.Int(vform, i);
}
dst.ClearForWrite(vform_dst);
dst.SetInt(vform_dst, 0, dst_val);
return dst;
}
LogicVRegister Simulator::uaddlv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
VectorFormat vform_dst
= ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform) * 2);
uint64_t dst_val = 0;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst_val += src.Uint(vform, i);
}
dst.ClearForWrite(vform_dst);
dst.SetUint(vform_dst, 0, dst_val);
return dst;
}
LogicVRegister Simulator::sminmaxv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
bool max) {
dst.ClearForWrite(vform);
int64_t dst_val = max ? INT64_MIN : INT64_MAX;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
int64_t src_val = src.Int(vform, i);
if (max == true) {
dst_val = (src_val > dst_val) ? src_val : dst_val;
} else {
dst_val = (src_val < dst_val) ? src_val : dst_val;
}
}
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetInt(vform, i, 0);
}
dst.SetInt(vform, 0, dst_val);
return dst;
}
LogicVRegister Simulator::smaxv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
sminmaxv(vform, dst, src, true);
return dst;
}
LogicVRegister Simulator::sminv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
sminmaxv(vform, dst, src, false);
return dst;
}
LogicVRegister Simulator::uminmax(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool max) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
uint64_t src1_val = src1.Uint(vform, i);
uint64_t src2_val = src2.Uint(vform, i);
uint64_t dst_val;
if (max == true) {
dst_val = (src1_val > src2_val) ? src1_val : src2_val;
} else {
dst_val = (src1_val < src2_val) ? src1_val : src2_val;
}
dst.SetUint(vform, i, dst_val);
}
return dst;
}
LogicVRegister Simulator::umax(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
return uminmax(vform, dst, src1, src2, true);
}
LogicVRegister Simulator::umin(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
return uminmax(vform, dst, src1, src2, false);
}
LogicVRegister Simulator::uminmaxp(VectorFormat vform,
LogicVRegister dst,
int dst_index,
const LogicVRegister& src,
bool max) {
for (int i = 0; i < LaneCountFromFormat(vform); i += 2) {
uint64_t src1_val = src.Uint(vform, i);
uint64_t src2_val = src.Uint(vform, i + 1);
uint64_t dst_val;
if (max == true) {
dst_val = (src1_val > src2_val) ? src1_val : src2_val;
} else {
dst_val = (src1_val < src2_val) ? src1_val : src2_val;
}
dst.SetUint(vform, dst_index + (i >> 1), dst_val);
}
return dst;
}
LogicVRegister Simulator::umaxp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
uminmaxp(vform, dst, 0, src1, true);
uminmaxp(vform, dst, LaneCountFromFormat(vform) >> 1, src2, true);
return dst;
}
LogicVRegister Simulator::uminp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
uminmaxp(vform, dst, 0, src1, false);
uminmaxp(vform, dst, LaneCountFromFormat(vform) >> 1, src2, false);
return dst;
}
LogicVRegister Simulator::uminmaxv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
bool max) {
dst.ClearForWrite(vform);
uint64_t dst_val = max ? 0 : UINT64_MAX;
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
uint64_t src_val = src.Uint(vform, i);
if (max == true) {
dst_val = (src_val > dst_val) ? src_val : dst_val;
} else {
dst_val = (src_val < dst_val) ? src_val : dst_val;
}
}
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, 0);
}
dst.SetUint(vform, 0, dst_val);
return dst;
}
LogicVRegister Simulator::umaxv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
uminmaxv(vform, dst, src, true);
return dst;
}
LogicVRegister Simulator::uminv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
uminmaxv(vform, dst, src, false);
return dst;
}
LogicVRegister Simulator::shl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp;
LogicVRegister shiftreg = dup_immediate(vform, temp, shift);
return ushl(vform, dst, src, shiftreg);
}
LogicVRegister Simulator::sshll(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp1, temp2;
LogicVRegister shiftreg = dup_immediate(vform, temp1, shift);
LogicVRegister extendedreg = sxtl(vform, temp2, src);
return sshl(vform, dst, extendedreg, shiftreg);
}
LogicVRegister Simulator::sshll2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp1, temp2;
LogicVRegister shiftreg = dup_immediate(vform, temp1, shift);
LogicVRegister extendedreg = sxtl2(vform, temp2, src);
return sshl(vform, dst, extendedreg, shiftreg);
}
LogicVRegister Simulator::shll(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
int shift = LaneSizeInBitsFromFormat(vform) / 2;
return sshll(vform, dst, src, shift);
}
LogicVRegister Simulator::shll2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
int shift = LaneSizeInBitsFromFormat(vform) / 2;
return sshll2(vform, dst, src, shift);
}
LogicVRegister Simulator::ushll(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp1, temp2;
LogicVRegister shiftreg = dup_immediate(vform, temp1, shift);
LogicVRegister extendedreg = uxtl(vform, temp2, src);
return ushl(vform, dst, extendedreg, shiftreg);
}
LogicVRegister Simulator::ushll2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp1, temp2;
LogicVRegister shiftreg = dup_immediate(vform, temp1, shift);
LogicVRegister extendedreg = uxtl2(vform, temp2, src);
return ushl(vform, dst, extendedreg, shiftreg);
}
LogicVRegister Simulator::sli(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
dst.ClearForWrite(vform);
int laneCount = LaneCountFromFormat(vform);
for (int i = 0; i < laneCount; i++) {
uint64_t src_lane = src.Uint(vform, i);
uint64_t dst_lane = dst.Uint(vform, i);
uint64_t shifted = src_lane << shift;
uint64_t mask = MaxUintFromFormat(vform) << shift;
dst.SetUint(vform, i, (dst_lane & ~mask) | shifted);
}
return dst;
}
LogicVRegister Simulator::sqshl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp;
LogicVRegister shiftreg = dup_immediate(vform, temp, shift);
return sshl(vform, dst, src, shiftreg).SignedSaturate(vform);
}
LogicVRegister Simulator::uqshl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp;
LogicVRegister shiftreg = dup_immediate(vform, temp, shift);
return ushl(vform, dst, src, shiftreg).UnsignedSaturate(vform);
}
LogicVRegister Simulator::sqshlu(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp;
LogicVRegister shiftreg = dup_immediate(vform, temp, shift);
return sshl(vform, dst, src, shiftreg).UnsignedSaturate(vform);
}
LogicVRegister Simulator::sri(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
dst.ClearForWrite(vform);
int laneCount = LaneCountFromFormat(vform);
VIXL_ASSERT((shift > 0) &&
(shift <= static_cast<int>(LaneSizeInBitsFromFormat(vform))));
for (int i = 0; i < laneCount; i++) {
uint64_t src_lane = src.Uint(vform, i);
uint64_t dst_lane = dst.Uint(vform, i);
uint64_t shifted;
uint64_t mask;
if (shift == 64) {
shifted = 0;
mask = 0;
} else {
shifted = src_lane >> shift;
mask = MaxUintFromFormat(vform) >> shift;
}
dst.SetUint(vform, i, (dst_lane & ~mask) | shifted);
}
return dst;
}
LogicVRegister Simulator::ushr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp;
LogicVRegister shiftreg = dup_immediate(vform, temp, -shift);
return ushl(vform, dst, src, shiftreg);
}
LogicVRegister Simulator::sshr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
VIXL_ASSERT(shift >= 0);
SimVRegister temp;
LogicVRegister shiftreg = dup_immediate(vform, temp, -shift);
return sshl(vform, dst, src, shiftreg);
}
LogicVRegister Simulator::ssra(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
SimVRegister temp;
LogicVRegister shifted_reg = sshr(vform, temp, src, shift);
return add(vform, dst, dst, shifted_reg);
}
LogicVRegister Simulator::usra(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
SimVRegister temp;
LogicVRegister shifted_reg = ushr(vform, temp, src, shift);
return add(vform, dst, dst, shifted_reg);
}
LogicVRegister Simulator::srsra(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
SimVRegister temp;
LogicVRegister shifted_reg = sshr(vform, temp, src, shift).Round(vform);
return add(vform, dst, dst, shifted_reg);
}
LogicVRegister Simulator::ursra(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift) {
SimVRegister temp;
LogicVRegister shifted_reg = ushr(vform, temp, src, shift).Round(vform);
return add(vform, dst, dst, shifted_reg);
}
LogicVRegister Simulator::cls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
uint64_t result[16];
int laneSizeInBits = LaneSizeInBitsFromFormat(vform);
int laneCount = LaneCountFromFormat(vform);
for (int i = 0; i < laneCount; i++) {
result[i] = CountLeadingSignBits(src.Int(vform, i), laneSizeInBits);
}
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, result[i]);
}
return dst;
}
LogicVRegister Simulator::clz(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
uint64_t result[16];
int laneSizeInBits = LaneSizeInBitsFromFormat(vform);
int laneCount = LaneCountFromFormat(vform);
for (int i = 0; i < laneCount; i++) {
result[i] = CountLeadingZeros(src.Uint(vform, i), laneSizeInBits);
}
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, result[i]);
}
return dst;
}
LogicVRegister Simulator::cnt(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
uint64_t result[16];
int laneSizeInBits = LaneSizeInBitsFromFormat(vform);
int laneCount = LaneCountFromFormat(vform);
for (int i = 0; i < laneCount; i++) {
uint64_t value = src.Uint(vform, i);
result[i] = 0;
for (int j = 0; j < laneSizeInBits; j++) {
result[i] += (value & 1);
value >>= 1;
}
}
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, result[i]);
}
return dst;
}
LogicVRegister Simulator::sshl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
int8_t shift_val = src2.Int(vform, i);
int64_t lj_src_val = src1.IntLeftJustified(vform, i);
// Set signed saturation state.
if ((shift_val > CountLeadingSignBits(lj_src_val)) &&
(lj_src_val != 0)) {
dst.SetSignedSat(i, lj_src_val >= 0);
}
// Set unsigned saturation state.
if (lj_src_val < 0) {
dst.SetUnsignedSat(i, false);
} else if ((shift_val > CountLeadingZeros(lj_src_val)) &&
(lj_src_val != 0)) {
dst.SetUnsignedSat(i, true);
}
int64_t src_val = src1.Int(vform, i);
if (shift_val > 63) {
dst.SetInt(vform, i, 0);
} else if (shift_val < -63) {
dst.SetRounding(i, src_val < 0);
dst.SetInt(vform, i, (src_val < 0) ? -1 : 0);
} else {
if (shift_val < 0) {
// Set rounding state. Rounding only needed on right shifts.
if (((src_val >> (-shift_val - 1)) & 1) == 1) {
dst.SetRounding(i, true);
}
src_val >>= -shift_val;
} else {
src_val <<= shift_val;
}
dst.SetInt(vform, i, src_val);
}
}
return dst;
}
LogicVRegister Simulator::ushl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
int8_t shift_val = src2.Int(vform, i);
uint64_t lj_src_val = src1.UintLeftJustified(vform, i);
// Set saturation state.
if ((shift_val > CountLeadingZeros(lj_src_val)) && (lj_src_val != 0)) {
dst.SetUnsignedSat(i, true);
}
uint64_t src_val = src1.Uint(vform, i);
if ((shift_val > 63) || (shift_val < -64)) {
dst.SetUint(vform, i, 0);
} else {
if (shift_val < 0) {
// Set rounding state. Rounding only needed on right shifts.
if (((src_val >> (-shift_val - 1)) & 1) == 1) {
dst.SetRounding(i, true);
}
if (shift_val == -64) {
src_val = 0;
} else {
src_val >>= -shift_val;
}
} else {
src_val <<= shift_val;
}
dst.SetUint(vform, i, src_val);
}
}
return dst;
}
LogicVRegister Simulator::neg(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
// Test for signed saturation.
int64_t sa = src.Int(vform, i);
if (sa == MinIntFromFormat(vform)) {
dst.SetSignedSat(i, true);
}
dst.SetInt(vform, i, -sa);
}
return dst;
}
LogicVRegister Simulator::suqadd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
int64_t sa = dst.IntLeftJustified(vform, i);
uint64_t ub = src.UintLeftJustified(vform, i);
int64_t sr = sa + ub;
if (sr < sa) { // Test for signed positive saturation.
dst.SetInt(vform, i, MaxIntFromFormat(vform));
} else {
dst.SetInt(vform, i, dst.Int(vform, i) + src.Int(vform, i));
}
}
return dst;
}
LogicVRegister Simulator::usqadd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
uint64_t ua = dst.UintLeftJustified(vform, i);
int64_t sb = src.IntLeftJustified(vform, i);
uint64_t ur = ua + sb;
if ((sb > 0) && (ur <= ua)) {
dst.SetUint(vform, i, MaxUintFromFormat(vform)); // Positive saturation.
} else if ((sb < 0) && (ur >= ua)) {
dst.SetUint(vform, i, 0); // Negative saturation.
} else {
dst.SetUint(vform, i, dst.Uint(vform, i) + src.Int(vform, i));
}
}
return dst;
}
LogicVRegister Simulator::abs(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
// Test for signed saturation.
int64_t sa = src.Int(vform, i);
if (sa == MinIntFromFormat(vform)) {
dst.SetSignedSat(i, true);
}
if (sa < 0) {
dst.SetInt(vform, i, -sa);
} else {
dst.SetInt(vform, i, sa);
}
}
return dst;
}
LogicVRegister Simulator::extractnarrow(VectorFormat dstform,
LogicVRegister dst,
bool dstIsSigned,
const LogicVRegister& src,
bool srcIsSigned) {
bool upperhalf = false;
VectorFormat srcform = kFormatUndefined;
int64_t ssrc[8];
uint64_t usrc[8];
switch (dstform) {
case kFormat8B : upperhalf = false; srcform = kFormat8H; break;
case kFormat16B: upperhalf = true; srcform = kFormat8H; break;
case kFormat4H : upperhalf = false; srcform = kFormat4S; break;
case kFormat8H : upperhalf = true; srcform = kFormat4S; break;
case kFormat2S : upperhalf = false; srcform = kFormat2D; break;
case kFormat4S : upperhalf = true; srcform = kFormat2D; break;
case kFormatB : upperhalf = false; srcform = kFormatH; break;
case kFormatH : upperhalf = false; srcform = kFormatS; break;
case kFormatS : upperhalf = false; srcform = kFormatD; break;
default:VIXL_UNIMPLEMENTED();
}
for (int i = 0; i < LaneCountFromFormat(srcform); i++) {
ssrc[i] = src.Int(srcform, i);
usrc[i] = src.Uint(srcform, i);
}
int offset;
if (upperhalf) {
offset = LaneCountFromFormat(dstform) / 2;
} else {
offset = 0;
dst.ClearForWrite(dstform);
}
for (int i = 0; i < LaneCountFromFormat(srcform); i++) {
// Test for signed saturation
if (ssrc[i] > MaxIntFromFormat(dstform)) {
dst.SetSignedSat(offset + i, true);
} else if (ssrc[i] < MinIntFromFormat(dstform)) {
dst.SetSignedSat(offset + i, false);
}
// Test for unsigned saturation
if (srcIsSigned) {
if (ssrc[i] > static_cast<int64_t>(MaxUintFromFormat(dstform))) {
dst.SetUnsignedSat(offset + i, true);
} else if (ssrc[i] < 0) {
dst.SetUnsignedSat(offset + i, false);
}
} else {
if (usrc[i] > MaxUintFromFormat(dstform)) {
dst.SetUnsignedSat(offset + i, true);
}
}
int64_t result;
if (srcIsSigned) {
result = ssrc[i] & MaxUintFromFormat(dstform);
} else {
result = usrc[i] & MaxUintFromFormat(dstform);
}
if (dstIsSigned) {
dst.SetInt(dstform, offset + i, result);
} else {
dst.SetUint(dstform, offset + i, result);
}
}
return dst;
}
LogicVRegister Simulator::xtn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return extractnarrow(vform, dst, true, src, true);
}
LogicVRegister Simulator::sqxtn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return extractnarrow(vform, dst, true, src, true).SignedSaturate(vform);
}
LogicVRegister Simulator::sqxtun(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return extractnarrow(vform, dst, false, src, true).UnsignedSaturate(vform);
}
LogicVRegister Simulator::uqxtn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return extractnarrow(vform, dst, false, src, false).UnsignedSaturate(vform);
}
LogicVRegister Simulator::absdiff(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool issigned) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
if (issigned) {
int64_t sr = src1.Int(vform, i) - src2.Int(vform, i);
sr = sr > 0 ? sr : -sr;
dst.SetInt(vform, i, sr);
} else {
int64_t sr = src1.Uint(vform, i) - src2.Uint(vform, i);
sr = sr > 0 ? sr : -sr;
dst.SetUint(vform, i, sr);
}
}
return dst;
}
LogicVRegister Simulator::saba(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
SimVRegister temp;
dst.ClearForWrite(vform);
absdiff(vform, temp, src1, src2, true);
add(vform, dst, dst, temp);
return dst;
}
LogicVRegister Simulator::uaba(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2) {
SimVRegister temp;
dst.ClearForWrite(vform);
absdiff(vform, temp, src1, src2, false);
add(vform, dst, dst, temp);
return dst;
}
LogicVRegister Simulator::not_(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
dst.ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
dst.SetUint(vform, i, ~src.Uint(vform, i));
}
return dst;
}
LogicVRegister Simulator::rbit(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
uint64_t result[16];
int laneCount = LaneCountFromFormat(vform);
int laneSizeInBits = LaneSizeInBitsFromFormat(vform);
uint64_t reversed_value;
uint64_t value;
for (int i = 0; i < laneCount; i++) {
value = src.Uint(vform, i);
reversed_value = 0;
for (int j = 0; j < laneSizeInBits; j++) {
reversed_value = (reversed_value << 1) | (value & 1);
value >>= 1;
}
result[i] = reversed_value;
}
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, result[i]);
}
return dst;
}
LogicVRegister Simulator::rev(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int revSize) {
uint64_t result[16];
int laneCount = LaneCountFromFormat(vform);
int laneSize = LaneSizeInBytesFromFormat(vform);
int lanesPerLoop = revSize / laneSize;
for (int i = 0; i < laneCount; i += lanesPerLoop) {
for (int j = 0; j < lanesPerLoop; j++) {
result[i + lanesPerLoop - 1 - j] = src.Uint(vform, i + j);
}
}
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, result[i]);
}
return dst;
}
LogicVRegister Simulator::rev16(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return rev(vform, dst, src, 2);
}
LogicVRegister Simulator::rev32(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return rev(vform, dst, src, 4);
}
LogicVRegister Simulator::rev64(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return rev(vform, dst, src, 8);
}
LogicVRegister Simulator::addlp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
bool is_signed,
bool do_accumulate) {
VectorFormat vformsrc = VectorFormatHalfWidthDoubleLanes(vform);
int64_t sr[16];
uint64_t ur[16];
int laneCount = LaneCountFromFormat(vform);
for (int i = 0; i < laneCount; ++i) {
if (is_signed) {
sr[i] = src.Int(vformsrc, 2 * i) + src.Int(vformsrc, 2 * i + 1);
} else {
ur[i] = src.Uint(vformsrc, 2 * i) + src.Uint(vformsrc, 2 * i + 1);
}
}
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
if (do_accumulate) {
if (is_signed) {
dst.SetInt(vform, i, dst.Int(vform, i) + sr[i]);
} else {
dst.SetUint(vform, i, dst.Uint(vform, i) + ur[i]);
}
} else {
if (is_signed) {
dst.SetInt(vform, i, sr[i]);
} else {
dst.SetUint(vform, i, ur[i]);
}
}
}
return dst;
}
LogicVRegister Simulator::saddlp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return addlp(vform, dst, src, true, false);
}
LogicVRegister Simulator::uaddlp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return addlp(vform, dst, src, false, false);
}
LogicVRegister Simulator::sadalp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return addlp(vform, dst, src, true, true);
}
LogicVRegister Simulator::uadalp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src) {
return addlp(vform, dst, src, false, true);
}
LogicVRegister Simulator::ext(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index) {
uint8_t result[16];
int laneCount = LaneCountFromFormat(vform);
for (int i = 0; i < laneCount - index; ++i) {
result[i] = src1.Uint(vform, i + index);
}
for (int i = 0; i < index; ++i) {
result[laneCount - index + i] = src2.Uint(vform, i);
}
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, result[i]);
}
return dst;
}
LogicVRegister Simulator::dup_element(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int src_index) {
int laneCount = LaneCountFromFormat(vform);
uint64_t value = src.Uint(vform, src_index);
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, value);
}
return dst;
}
LogicVRegister Simulator::dup_immediate(VectorFormat vform,
LogicVRegister dst,
uint64_t imm) {
int laneCount = LaneCountFromFormat(vform);
uint64_t value = imm & MaxUintFromFormat(vform);
dst.ClearForWrite(vform);
for (int i = 0; i < laneCount; ++i) {
dst.SetUint(vform, i, value);
}
return dst;
}
LogicVRegister Simulator::ins_element(VectorFormat vform,
LogicVRegister dst,
int dst_index,
const LogicVRegister& src,
int src_index) {
dst.SetUint(vform, dst_index, src.Uint(vform, src_index));
return dst;
}
LogicVRegister Simulator::ins_immediate(VectorFormat vform,
LogicVRegister dst,