Source code

Revision control

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_arm_MacroAssembler_arm_h
#define jit_arm_MacroAssembler_arm_h
#include "mozilla/DebugOnly.h"
#include "jit/arm/Assembler-arm.h"
#include "jit/JitFrames.h"
#include "jit/MoveResolver.h"
#include "vm/BigIntType.h"
#include "vm/BytecodeUtil.h"
namespace js {
namespace jit {
static Register CallReg = ip;
static const int defaultShift = 3;
static_assert(1 << defaultShift == sizeof(JS::Value));
// See documentation for ScratchTagScope and ScratchTagScopeRelease in
// MacroAssembler-x64.h.
class ScratchTagScope {
const ValueOperand& v_;
public:
ScratchTagScope(MacroAssembler&, const ValueOperand& v) : v_(v) {}
operator Register() { return v_.typeReg(); }
void release() {}
void reacquire() {}
};
class ScratchTagScopeRelease {
public:
explicit ScratchTagScopeRelease(ScratchTagScope*) {}
};
// MacroAssemblerARM is inheriting form Assembler defined in
// Assembler-arm.{h,cpp}
class MacroAssemblerARM : public Assembler {
private:
// Perform a downcast. Should be removed by Bug 996602.
MacroAssembler& asMasm();
const MacroAssembler& asMasm() const;
protected:
// On ARM, some instructions require a second scratch register. This
// register defaults to lr, since it's non-allocatable (as it can be
// clobbered by some instructions). Allow the baseline compiler to override
// this though, since baseline IC stubs rely on lr holding the return
// address.
Register secondScratchReg_;
public:
Register getSecondScratchReg() const { return secondScratchReg_; }
public:
// Higher level tag testing code.
// TODO: Can probably remove the Operand versions.
Operand ToPayload(Operand base) const {
return Operand(Register::FromCode(base.base()), base.disp());
}
Address ToPayload(const Address& base) const { return base; }
protected:
Operand ToType(Operand base) const {
return Operand(Register::FromCode(base.base()),
base.disp() + sizeof(void*));
}
Address ToType(const Address& base) const {
return ToType(Operand(base)).toAddress();
}
Address ToPayloadAfterStackPush(const Address& base) const {
// If we are based on StackPointer, pass over the type tag just pushed.
if (base.base == StackPointer) {
return Address(base.base, base.offset + sizeof(void*));
}
return ToPayload(base);
}
public:
MacroAssemblerARM() : secondScratchReg_(lr) {}
void setSecondScratchReg(Register reg) {
MOZ_ASSERT(reg != ScratchRegister);
secondScratchReg_ = reg;
}
void convertBoolToInt32(Register source, Register dest);
void convertInt32ToDouble(Register src, FloatRegister dest);
void convertInt32ToDouble(const Address& src, FloatRegister dest);
void convertInt32ToDouble(const BaseIndex& src, FloatRegister dest);
void convertUInt32ToFloat32(Register src, FloatRegister dest);
void convertUInt32ToDouble(Register src, FloatRegister dest);
void convertDoubleToFloat32(FloatRegister src, FloatRegister dest,
Condition c = Always);
void convertDoubleToInt32(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true);
void convertFloat32ToInt32(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true);
void convertFloat32ToDouble(FloatRegister src, FloatRegister dest);
void convertInt32ToFloat32(Register src, FloatRegister dest);
void convertInt32ToFloat32(const Address& src, FloatRegister dest);
void wasmTruncateToInt32(FloatRegister input, Register output,
MIRType fromType, bool isUnsigned, bool isSaturating,
Label* oolEntry);
void outOfLineWasmTruncateToIntCheck(FloatRegister input, MIRType fromType,
MIRType toType, TruncFlags flags,
Label* rejoin,
wasm::BytecodeOffset trapOffset);
// Somewhat direct wrappers for the low-level assembler funcitons
// bitops. Attempt to encode a virtual alu instruction using two real
// instructions.
private:
bool alu_dbl(Register src1, Imm32 imm, Register dest, ALUOp op, SBit s,
Condition c);
public:
void ma_alu(Register src1, Imm32 imm, Register dest,
AutoRegisterScope& scratch, ALUOp op, SBit s = LeaveCC,
Condition c = Always);
void ma_alu(Register src1, Operand2 op2, Register dest, ALUOp op,
SBit s = LeaveCC, Condition c = Always);
void ma_alu(Register src1, Operand op2, Register dest, ALUOp op,
SBit s = LeaveCC, Condition c = Always);
void ma_nop();
BufferOffset ma_movPatchable(Imm32 imm, Register dest,
Assembler::Condition c);
BufferOffset ma_movPatchable(ImmPtr imm, Register dest,
Assembler::Condition c);
// To be used with Iter := InstructionIterator or BufferInstructionIterator.
template <class Iter>
static void ma_mov_patch(Imm32 imm, Register dest, Assembler::Condition c,
RelocStyle rs, Iter iter);
// ALU based ops
// mov
void ma_mov(Register src, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_mov(Imm32 imm, Register dest, Condition c = Always);
void ma_mov(ImmWord imm, Register dest, Condition c = Always);
void ma_mov(ImmGCPtr ptr, Register dest);
// Shifts (just a move with a shifting op2)
void ma_lsl(Imm32 shift, Register src, Register dst);
void ma_lsr(Imm32 shift, Register src, Register dst);
void ma_asr(Imm32 shift, Register src, Register dst);
void ma_ror(Imm32 shift, Register src, Register dst);
void ma_rol(Imm32 shift, Register src, Register dst);
void ma_lsl(Register shift, Register src, Register dst);
void ma_lsr(Register shift, Register src, Register dst);
void ma_asr(Register shift, Register src, Register dst);
void ma_ror(Register shift, Register src, Register dst);
void ma_rol(Register shift, Register src, Register dst,
AutoRegisterScope& scratch);
// Move not (dest <- ~src)
void ma_mvn(Register src1, Register dest, SBit s = LeaveCC,
Condition c = Always);
// Negate (dest <- -src) implemented as rsb dest, src, 0
void ma_neg(Register src, Register dest, SBit s = LeaveCC,
Condition c = Always);
// And
void ma_and(Register src, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_and(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_and(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_and(Imm32 imm, Register src1, Register dest,
AutoRegisterScope& scratch, SBit s = LeaveCC,
Condition c = Always);
// Bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2)
void ma_bic(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
// Exclusive or
void ma_eor(Register src, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_eor(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_eor(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_eor(Imm32 imm, Register src1, Register dest,
AutoRegisterScope& scratch, SBit s = LeaveCC,
Condition c = Always);
// Or
void ma_orr(Register src, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_orr(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_orr(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_orr(Imm32 imm, Register src1, Register dest,
AutoRegisterScope& scratch, SBit s = LeaveCC,
Condition c = Always);
// Arithmetic based ops.
// Add with carry:
void ma_adc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_adc(Register src, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_adc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
// Add:
void ma_add(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_add(Register src1, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_add(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_add(Register src1, Operand op, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_add(Register src1, Imm32 op, Register dest,
AutoRegisterScope& scratch, SBit s = LeaveCC,
Condition c = Always);
// Subtract with carry:
void ma_sbc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_sbc(Register src1, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_sbc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
// Subtract:
void ma_sub(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_sub(Register src1, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_sub(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_sub(Register src1, Operand op, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_sub(Register src1, Imm32 op, Register dest,
AutoRegisterScope& scratch, SBit s = LeaveCC,
Condition c = Always);
// Reverse subtract:
void ma_rsb(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_rsb(Register src1, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_rsb(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_rsb(Register src1, Imm32 op2, Register dest,
AutoRegisterScope& scratch, SBit s = LeaveCC,
Condition c = Always);
// Reverse subtract with carry:
void ma_rsc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
SBit s = LeaveCC, Condition c = Always);
void ma_rsc(Register src1, Register dest, SBit s = LeaveCC,
Condition c = Always);
void ma_rsc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
Condition c = Always);
// Compares/tests.
// Compare negative (sets condition codes as src1 + src2 would):
void ma_cmn(Register src1, Imm32 imm, AutoRegisterScope& scratch,
Condition c = Always);
void ma_cmn(Register src1, Register src2, Condition c = Always);
void ma_cmn(Register src1, Operand op, Condition c = Always);
// Compare (src - src2):
void ma_cmp(Register src1, Imm32 imm, AutoRegisterScope& scratch,
Condition c = Always);
void ma_cmp(Register src1, ImmTag tag, Condition c = Always);
void ma_cmp(Register src1, ImmWord ptr, AutoRegisterScope& scratch,
Condition c = Always);
void ma_cmp(Register src1, ImmGCPtr ptr, AutoRegisterScope& scratch,
Condition c = Always);
void ma_cmp(Register src1, Operand op, AutoRegisterScope& scratch,
AutoRegisterScope& scratch2, Condition c = Always);
void ma_cmp(Register src1, Register src2, Condition c = Always);
// Test for equality, (src1 ^ src2):
void ma_teq(Register src1, Imm32 imm, AutoRegisterScope& scratch,
Condition c = Always);
void ma_teq(Register src1, Register src2, Condition c = Always);
void ma_teq(Register src1, Operand op, Condition c = Always);
// Test (src1 & src2):
void ma_tst(Register src1, Imm32 imm, AutoRegisterScope& scratch,
Condition c = Always);
void ma_tst(Register src1, Register src2, Condition c = Always);
void ma_tst(Register src1, Operand op, Condition c = Always);
// Multiplies. For now, there are only two that we care about.
void ma_mul(Register src1, Register src2, Register dest);
void ma_mul(Register src1, Imm32 imm, Register dest,
AutoRegisterScope& scratch);
Condition ma_check_mul(Register src1, Register src2, Register dest,
AutoRegisterScope& scratch, Condition cond);
Condition ma_check_mul(Register src1, Imm32 imm, Register dest,
AutoRegisterScope& scratch, Condition cond);
void ma_umull(Register src1, Imm32 imm, Register destHigh, Register destLow,
AutoRegisterScope& scratch);
void ma_umull(Register src1, Register src2, Register destHigh,
Register destLow);
// Fast mod, uses scratch registers, and thus needs to be in the assembler
// implicitly assumes that we can overwrite dest at the beginning of the
// sequence.
void ma_mod_mask(Register src, Register dest, Register hold, Register tmp,
AutoRegisterScope& scratch, AutoRegisterScope& scratch2,
int32_t shift);
// Mod - depends on integer divide instructions being supported.
void ma_smod(Register num, Register div, Register dest,
AutoRegisterScope& scratch);
void ma_umod(Register num, Register div, Register dest,
AutoRegisterScope& scratch);
// Division - depends on integer divide instructions being supported.
void ma_sdiv(Register num, Register div, Register dest,
Condition cond = Always);
void ma_udiv(Register num, Register div, Register dest,
Condition cond = Always);
// Misc operations
void ma_clz(Register src, Register dest, Condition cond = Always);
void ma_ctz(Register src, Register dest, AutoRegisterScope& scratch);
// Memory:
// Shortcut for when we know we're transferring 32 bits of data.
void ma_dtr(LoadStore ls, Register rn, Imm32 offset, Register rt,
AutoRegisterScope& scratch, Index mode = Offset,
Condition cc = Always);
void ma_dtr(LoadStore ls, Register rt, const Address& addr,
AutoRegisterScope& scratch, Index mode, Condition cc);
void ma_str(Register rt, DTRAddr addr, Index mode = Offset,
Condition cc = Always);
void ma_str(Register rt, const Address& addr, AutoRegisterScope& scratch,
Index mode = Offset, Condition cc = Always);
void ma_ldr(DTRAddr addr, Register rt, Index mode = Offset,
Condition cc = Always);
void ma_ldr(const Address& addr, Register rt, AutoRegisterScope& scratch,
Index mode = Offset, Condition cc = Always);
void ma_ldrb(DTRAddr addr, Register rt, Index mode = Offset,
Condition cc = Always);
void ma_ldrh(EDtrAddr addr, Register rt, Index mode = Offset,
Condition cc = Always);
void ma_ldrsh(EDtrAddr addr, Register rt, Index mode = Offset,
Condition cc = Always);
void ma_ldrsb(EDtrAddr addr, Register rt, Index mode = Offset,
Condition cc = Always);
void ma_ldrd(EDtrAddr addr, Register rt, mozilla::DebugOnly<Register> rt2,
Index mode = Offset, Condition cc = Always);
void ma_strb(Register rt, DTRAddr addr, Index mode = Offset,
Condition cc = Always);
void ma_strh(Register rt, EDtrAddr addr, Index mode = Offset,
Condition cc = Always);
void ma_strd(Register rt, mozilla::DebugOnly<Register> rt2, EDtrAddr addr,
Index mode = Offset, Condition cc = Always);
// Specialty for moving N bits of data, where n == 8,16,32,64.
BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Register rm, Register rt,
AutoRegisterScope& scratch, Index mode = Offset,
Condition cc = Always, Scale scale = TimesOne);
BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Register rm, Register rt,
Index mode = Offset, Condition cc = Always);
BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Imm32 offset, Register rt,
AutoRegisterScope& scratch, Index mode = Offset,
Condition cc = Always);
void ma_pop(Register r);
void ma_popn_pc(Imm32 n, AutoRegisterScope& scratch,
AutoRegisterScope& scratch2);
void ma_push(Register r);
void ma_push_sp(Register r, AutoRegisterScope& scratch);
void ma_vpop(VFPRegister r);
void ma_vpush(VFPRegister r);
// Barriers.
void ma_dmb(BarrierOption option = BarrierSY);
void ma_dsb(BarrierOption option = BarrierSY);
// Branches when done from within arm-specific code.
BufferOffset ma_b(Label* dest, Condition c = Always);
void ma_b(void* target, Condition c = Always);
void ma_bx(Register dest, Condition c = Always);
// This is almost NEVER necessary, we'll basically never be calling a label
// except, possibly in the crazy bailout-table case.
void ma_bl(Label* dest, Condition c = Always);
void ma_blx(Register dest, Condition c = Always);
// VFP/ALU:
void ma_vadd(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vsub(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vmul(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vdiv(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vneg(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vmov(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vmov_f32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
void ma_vabs(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vabs_f32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
void ma_vsqrt(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vsqrt_f32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
void ma_vimm(double value, FloatRegister dest, Condition cc = Always);
void ma_vimm_f32(float value, FloatRegister dest, Condition cc = Always);
void ma_vcmp(FloatRegister src1, FloatRegister src2, Condition cc = Always);
void ma_vcmp_f32(FloatRegister src1, FloatRegister src2,
Condition cc = Always);
void ma_vcmpz(FloatRegister src1, Condition cc = Always);
void ma_vcmpz_f32(FloatRegister src1, Condition cc = Always);
void ma_vadd_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vsub_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vmul_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vdiv_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vneg_f32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
// Source is F64, dest is I32:
void ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
void ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
// Source is I32, dest is F64:
void ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest,
Condition cc = Always);
void ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest,
Condition cc = Always);
// Source is F32, dest is I32:
void ma_vcvt_F32_I32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
void ma_vcvt_F32_U32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
// Source is I32, dest is F32:
void ma_vcvt_I32_F32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
void ma_vcvt_U32_F32(FloatRegister src, FloatRegister dest,
Condition cc = Always);
// Transfer (do not coerce) a float into a gpr.
void ma_vxfer(VFPRegister src, Register dest, Condition cc = Always);
// Transfer (do not coerce) a double into a couple of gpr.
void ma_vxfer(VFPRegister src, Register dest1, Register dest2,
Condition cc = Always);
// Transfer (do not coerce) a gpr into a float
void ma_vxfer(Register src, FloatRegister dest, Condition cc = Always);
// Transfer (do not coerce) a couple of gpr into a double
void ma_vxfer(Register src1, Register src2, FloatRegister dest,
Condition cc = Always);
BufferOffset ma_vdtr(LoadStore ls, const Address& addr, VFPRegister dest,
AutoRegisterScope& scratch, Condition cc = Always);
BufferOffset ma_vldr(VFPAddr addr, VFPRegister dest, Condition cc = Always);
BufferOffset ma_vldr(const Address& addr, VFPRegister dest,
AutoRegisterScope& scratch, Condition cc = Always);
BufferOffset ma_vldr(VFPRegister src, Register base, Register index,
AutoRegisterScope& scratch, int32_t shift = defaultShift,
Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, VFPAddr addr, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, const Address& addr,
AutoRegisterScope& scratch, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, Register base, Register index,
AutoRegisterScope& scratch, AutoRegisterScope& scratch2,
int32_t shift, int32_t offset, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, Register base, Register index,
AutoRegisterScope& scratch, int32_t shift,
Condition cc = Always);
void ma_call(ImmPtr dest);
// Float registers can only be loaded/stored in continuous runs when using
// vstm/vldm. This function breaks set into continuous runs and loads/stores
// them at [rm]. rm will be modified and left in a state logically suitable
// for the next load/store. Returns the offset from [dm] for the logical
// next load/store.
int32_t transferMultipleByRuns(FloatRegisterSet set, LoadStore ls,
Register rm, DTMMode mode) {
if (mode == IA) {
return transferMultipleByRunsImpl<FloatRegisterForwardIterator>(
set, ls, rm, mode, 1);
}
if (mode == DB) {
return transferMultipleByRunsImpl<FloatRegisterBackwardIterator>(
set, ls, rm, mode, -1);
}
MOZ_CRASH("Invalid data transfer addressing mode");
}
// `outAny` is valid if and only if `out64` == Register64::Invalid().
void wasmLoadImpl(const wasm::MemoryAccessDesc& access, Register memoryBase,
Register ptr, Register ptrScratch, AnyRegister outAny,
Register64 out64);
// `valAny` is valid if and only if `val64` == Register64::Invalid().
void wasmStoreImpl(const wasm::MemoryAccessDesc& access, AnyRegister valAny,
Register64 val64, Register memoryBase, Register ptr,
Register ptrScratch);
protected:
// `outAny` is valid if and only if `out64` == Register64::Invalid().
void wasmUnalignedLoadImpl(const wasm::MemoryAccessDesc& access,
Register memoryBase, Register ptr,
Register ptrScratch, AnyRegister outAny,
Register64 out64, Register tmp1, Register tmp2,
Register tmp3);
// The value to be stored is in `floatValue` (if not invalid), `val64` (if not
// invalid), or in `valOrTmp` (if `floatValue` and `val64` are both invalid).
// Note `valOrTmp` must always be valid.
void wasmUnalignedStoreImpl(const wasm::MemoryAccessDesc& access,
FloatRegister floatValue, Register64 val64,
Register memoryBase, Register ptr,
Register ptrScratch, Register valOrTmp);
private:
// Loads `byteSize` bytes, byte by byte, by reading from ptr[offset],
// applying the indicated signedness (defined by isSigned).
// - all three registers must be different.
// - tmp and dest will get clobbered, ptr will remain intact.
// - byteSize can be up to 4 bytes and no more (GPR are 32 bits on ARM).
// - offset can be 0 or 4
// If `access` is not null then emit the appropriate access metadata.
void emitUnalignedLoad(const wasm::MemoryAccessDesc* access, bool isSigned,
unsigned byteSize, Register ptr, Register tmp,
Register dest, unsigned offset = 0);
// Ditto, for a store. Note stores don't care about signedness.
// - the two registers must be different.
// - val will get clobbered, ptr will remain intact.
// - byteSize can be up to 4 bytes and no more (GPR are 32 bits on ARM).
// - offset can be 0 or 4
// If `access` is not null then emit the appropriate access metadata.
void emitUnalignedStore(const wasm::MemoryAccessDesc* access,
unsigned byteSize, Register ptr, Register val,
unsigned offset = 0);
// Implementation for transferMultipleByRuns so we can use different
// iterators for forward/backward traversals. The sign argument should be 1
// if we traverse forwards, -1 if we traverse backwards.
template <typename RegisterIterator>
int32_t transferMultipleByRunsImpl(FloatRegisterSet set, LoadStore ls,
Register rm, DTMMode mode, int32_t sign) {
MOZ_ASSERT(sign == 1 || sign == -1);
int32_t delta = sign * sizeof(float);
int32_t offset = 0;
// Build up a new set, which is the sum of all of the single and double
// registers. This set can have up to 48 registers in it total
// s0-s31 and d16-d31
FloatRegisterSet mod = set.reduceSetForPush();
RegisterIterator iter(mod);
while (iter.more()) {
startFloatTransferM(ls, rm, mode, WriteBack);
int32_t reg = (*iter).code();
do {
offset += delta;
if ((*iter).isDouble()) {
offset += delta;
}
transferFloatReg(*iter);
} while ((++iter).more() && int32_t((*iter).code()) == (reg += sign));
finishFloatTransfer();
}
return offset;
}
};
class MacroAssembler;
class MacroAssemblerARMCompat : public MacroAssemblerARM {
private:
// Perform a downcast. Should be removed by Bug 996602.
MacroAssembler& asMasm();
const MacroAssembler& asMasm() const;
public:
MacroAssemblerARMCompat() {}
public:
// Jumps + other functions that should be called from non-arm specific
// code. Basically, an x86 front end on top of the ARM code.
void j(Condition code, Label* dest) { as_b(dest, code); }
void j(Label* dest) { as_b(dest, Always); }
void mov(Register src, Register dest) { ma_mov(src, dest); }
void mov(ImmWord imm, Register dest) { ma_mov(Imm32(imm.value), dest); }
void mov(ImmPtr imm, Register dest) {
mov(ImmWord(uintptr_t(imm.value)), dest);
}
void branch(JitCode* c) {
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE);
ScratchRegisterScope scratch(asMasm());
ma_movPatchable(ImmPtr(c->raw()), scratch, Always);
ma_bx(scratch);
}
void branch(const Register reg) { ma_bx(reg); }
void nop() { ma_nop(); }
void shortJumpSizedNop() { ma_nop(); }
void ret() { ma_pop(pc); }
void retn(Imm32 n) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_popn_pc(n, scratch, scratch2);
}
void push(Imm32 imm) {
ScratchRegisterScope scratch(asMasm());
ma_mov(imm, scratch);
ma_push(scratch);
}
void push(ImmWord imm) { push(Imm32(imm.value)); }
void push(ImmGCPtr imm) {
ScratchRegisterScope scratch(asMasm());
ma_mov(imm, scratch);
ma_push(scratch);
}
void push(const Address& addr) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_ldr(addr, scratch, scratch2);
ma_push(scratch);
}
void push(Register reg) {
if (reg == sp) {
ScratchRegisterScope scratch(asMasm());
ma_push_sp(reg, scratch);
} else {
ma_push(reg);
}
}
void push(FloatRegister reg) { ma_vpush(VFPRegister(reg)); }
void pushWithPadding(Register reg, const Imm32 extraSpace) {
ScratchRegisterScope scratch(asMasm());
Imm32 totSpace = Imm32(extraSpace.value + 4);
ma_dtr(IsStore, sp, totSpace, reg, scratch, PreIndex);
}
void pushWithPadding(Imm32 imm, const Imm32 extraSpace) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
Imm32 totSpace = Imm32(extraSpace.value + 4);
ma_mov(imm, scratch);
ma_dtr(IsStore, sp, totSpace, scratch, scratch2, PreIndex);
}
void pop(Register reg) { ma_pop(reg); }
void pop(FloatRegister reg) { ma_vpop(VFPRegister(reg)); }
void popN(Register reg, Imm32 extraSpace) {
ScratchRegisterScope scratch(asMasm());
Imm32 totSpace = Imm32(extraSpace.value + 4);
ma_dtr(IsLoad, sp, totSpace, reg, scratch, PostIndex);
}
CodeOffset toggledJump(Label* label);
// Emit a BLX or NOP instruction. ToggleCall can be used to patch this
// instruction.
CodeOffset toggledCall(JitCode* target, bool enabled);
CodeOffset pushWithPatch(ImmWord imm) {
ScratchRegisterScope scratch(asMasm());
CodeOffset label = movWithPatch(imm, scratch);
ma_push(scratch);
return label;
}
CodeOffset movWithPatch(ImmWord imm, Register dest) {
CodeOffset label = CodeOffset(currentOffset());
ma_movPatchable(Imm32(imm.value), dest, Always);
return label;
}
CodeOffset movWithPatch(ImmPtr imm, Register dest) {
return movWithPatch(ImmWord(uintptr_t(imm.value)), dest);
}
void jump(Label* label) { as_b(label); }
void jump(JitCode* code) { branch(code); }
void jump(ImmPtr ptr) {
ScratchRegisterScope scratch(asMasm());
movePtr(ptr, scratch);
ma_bx(scratch);
}
void jump(TrampolinePtr code) { jump(ImmPtr(code.value)); }
void jump(Register reg) { ma_bx(reg); }
void jump(const Address& addr) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_ldr(addr, scratch, scratch2);
ma_bx(scratch);
}
void negl(Register reg) { ma_neg(reg, reg, SetCC); }
void test32(Register lhs, Register rhs) { ma_tst(lhs, rhs); }
void test32(Register lhs, Imm32 imm) {
ScratchRegisterScope scratch(asMasm());
ma_tst(lhs, imm, scratch);
}
void test32(const Address& addr, Imm32 imm) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_ldr(addr, scratch, scratch2);
ma_tst(scratch, imm, scratch2);
}
void testPtr(Register lhs, Register rhs) { test32(lhs, rhs); }
void splitTagForTest(const ValueOperand& value, ScratchTagScope& tag) {
MOZ_ASSERT(value.typeReg() == tag);
}
// Higher level tag testing code.
Condition testInt32(Condition cond, const ValueOperand& value);
Condition testBoolean(Condition cond, const ValueOperand& value);
Condition testDouble(Condition cond, const ValueOperand& value);
Condition testNull(Condition cond, const ValueOperand& value);
Condition testUndefined(Condition cond, const ValueOperand& value);
Condition testString(Condition cond, const ValueOperand& value);
Condition testSymbol(Condition cond, const ValueOperand& value);
Condition testBigInt(Condition cond, const ValueOperand& value);
Condition testObject(Condition cond, const ValueOperand& value);
Condition testNumber(Condition cond, const ValueOperand& value);
Condition testMagic(Condition cond, const ValueOperand& value);
Condition testPrimitive(Condition cond, const ValueOperand& value);
Condition testGCThing(Condition cond, const ValueOperand& value);
// Register-based tests.
Condition testInt32(Condition cond, Register tag);
Condition testBoolean(Condition cond, Register tag);
Condition testNull(Condition cond, Register tag);
Condition testUndefined(Condition cond, Register tag);
Condition testString(Condition cond, Register tag);
Condition testSymbol(Condition cond, Register tag);
Condition testBigInt(Condition cond, Register tag);
Condition testObject(Condition cond, Register tag);
Condition testDouble(Condition cond, Register tag);
Condition testNumber(Condition cond, Register tag);
Condition testMagic(Condition cond, Register tag);
Condition testPrimitive(Condition cond, Register tag);
Condition testGCThing(Condition cond, Register tag);
Condition testGCThing(Condition cond, const Address& address);
Condition testMagic(Condition cond, const Address& address);
Condition testInt32(Condition cond, const Address& address);
Condition testDouble(Condition cond, const Address& address);
Condition testBoolean(Condition cond, const Address& address);
Condition testNull(Condition cond, const Address& address);
Condition testUndefined(Condition cond, const Address& address);
Condition testString(Condition cond, const Address& address);
Condition testSymbol(Condition cond, const Address& address);
Condition testBigInt(Condition cond, const Address& address);
Condition testObject(Condition cond, const Address& address);
Condition testNumber(Condition cond, const Address& address);
Condition testUndefined(Condition cond, const BaseIndex& src);
Condition testNull(Condition cond, const BaseIndex& src);
Condition testBoolean(Condition cond, const BaseIndex& src);
Condition testString(Condition cond, const BaseIndex& src);
Condition testSymbol(Condition cond, const BaseIndex& src);
Condition testBigInt(Condition cond, const BaseIndex& src);
Condition testInt32(Condition cond, const BaseIndex& src);
Condition testObject(Condition cond, const BaseIndex& src);
Condition testDouble(Condition cond, const BaseIndex& src);
Condition testMagic(Condition cond, const BaseIndex& src);
Condition testGCThing(Condition cond, const BaseIndex& src);
// Unboxing code.
void unboxNonDouble(const ValueOperand& operand, Register dest,
JSValueType type);
void unboxNonDouble(const Address& src, Register dest, JSValueType type);
void unboxNonDouble(const BaseIndex& src, Register dest, JSValueType type);
void unboxInt32(const ValueOperand& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
}
void unboxInt32(const Address& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
}
void unboxInt32(const BaseIndex& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
}
void unboxBoolean(const ValueOperand& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
}
void unboxBoolean(const Address& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
}
void unboxBoolean(const BaseIndex& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
}
void unboxString(const ValueOperand& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_STRING);
}
void unboxString(const Address& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_STRING);
}
void unboxSymbol(const ValueOperand& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL);
}
void unboxSymbol(const Address& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL);
}
void unboxBigInt(const ValueOperand& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT);
}
void unboxBigInt(const Address& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT);
}
void unboxObject(const ValueOperand& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void unboxObject(const Address& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void unboxObject(const BaseIndex& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void unboxObjectOrNull(const ValueOperand& src, Register dest) {
// Due to Spectre mitigation logic (see Value.h), if the value is an Object
// then this yields the object; otherwise it yields zero (null), as desired.
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void unboxObjectOrNull(const Address& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void unboxObjectOrNull(const BaseIndex& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void unboxDouble(const ValueOperand& src, FloatRegister dest);
void unboxDouble(const Address& src, FloatRegister dest);
void unboxDouble(const BaseIndex& src, FloatRegister dest);
void unboxValue(const ValueOperand& src, AnyRegister dest, JSValueType type);
// See comment in MacroAssembler-x64.h.
void unboxGCThingForGCBarrier(const Address& src, Register dest) {
load32(ToPayload(src), dest);
}
void notBoolean(const ValueOperand& val) {
as_eor(val.payloadReg(), val.payloadReg(), Imm8(1));
}
template <typename T>
void fallibleUnboxPtrImpl(const T& src, Register dest, JSValueType type,
Label* fail);
// Boxing code.
void boxDouble(FloatRegister src, const ValueOperand& dest, FloatRegister);
void boxNonDouble(JSValueType type, Register src, const ValueOperand& dest);
// Extended unboxing API. If the payload is already in a register, returns
// that register. Otherwise, provides a move to the given scratch register,
// and returns that.
MOZ_MUST_USE Register extractObject(const Address& address, Register scratch);
MOZ_MUST_USE Register extractObject(const ValueOperand& value,
Register scratch) {
unboxNonDouble(value, value.payloadReg(), JSVAL_TYPE_OBJECT);
return value.payloadReg();
}
MOZ_MUST_USE Register extractSymbol(const ValueOperand& value,
Register scratch) {
unboxNonDouble(value, value.payloadReg(), JSVAL_TYPE_SYMBOL);
return value.payloadReg();
}
MOZ_MUST_USE Register extractInt32(const ValueOperand& value,
Register scratch) {
return value.payloadReg();
}
MOZ_MUST_USE Register extractBoolean(const ValueOperand& value,
Register scratch) {
return value.payloadReg();
}
MOZ_MUST_USE Register extractTag(const Address& address, Register scratch);
MOZ_MUST_USE Register extractTag(const BaseIndex& address, Register scratch);
MOZ_MUST_USE Register extractTag(const ValueOperand& value,
Register scratch) {
return value.typeReg();
}
void boolValueToDouble(const ValueOperand& operand, FloatRegister dest);
void int32ValueToDouble(const ValueOperand& operand, FloatRegister dest);
void loadInt32OrDouble(const Address& src, FloatRegister dest);
void loadInt32OrDouble(Register base, Register index, FloatRegister dest,
int32_t shift = defaultShift);
void loadConstantDouble(double dp, FloatRegister dest);
// Treat the value as a boolean, and set condition codes accordingly.
Condition testInt32Truthy(bool truthy, const ValueOperand& operand);
Condition testBooleanTruthy(bool truthy, const ValueOperand& operand);
Condition testDoubleTruthy(bool truthy, FloatRegister reg);
Condition testStringTruthy(bool truthy, const ValueOperand& value);
Condition testBigIntTruthy(bool truthy, const ValueOperand& value);
void boolValueToFloat32(const ValueOperand& operand, FloatRegister dest);
void int32ValueToFloat32(const ValueOperand& operand, FloatRegister dest);
void loadConstantFloat32(float f, FloatRegister dest);
void loadUnboxedValue(Address address, MIRType type, AnyRegister dest) {
if (dest.isFloat()) {
loadInt32OrDouble(address, dest.fpu());
} else {
ScratchRegisterScope scratch(asMasm());
ma_ldr(address, dest.gpr(), scratch);
}
}
void loadUnboxedValue(BaseIndex address, MIRType type, AnyRegister dest) {
if (dest.isFloat()) {
loadInt32OrDouble(address.base, address.index, dest.fpu(), address.scale);
} else {
load32(address, dest.gpr());
}
}
template <typename T>
void storeUnboxedPayload(ValueOperand value, T address, size_t nbytes,
JSValueType) {
switch (nbytes) {
case 4:
storePtr(value.payloadReg(), address);
return;
case 1:
store8(value.payloadReg(), address);
return;
default:
MOZ_CRASH("Bad payload width");
}
}
void storeValue(ValueOperand val, const Address& dst);
void storeValue(ValueOperand val, const BaseIndex& dest);
void storeValue(JSValueType type, Register reg, BaseIndex dest) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
int32_t payloadoffset = dest.offset + NUNBOX32_PAYLOAD_OFFSET;
int32_t typeoffset = dest.offset + NUNBOX32_TYPE_OFFSET;
ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
// Store the payload.
if (payloadoffset < 4096 && payloadoffset > -4096) {
ma_str(reg, DTRAddr(scratch, DtrOffImm(payloadoffset)));
} else {
ma_str(reg, Address(scratch, payloadoffset), scratch2);
}
// Store the type.
if (typeoffset < 4096 && typeoffset > -4096) {
// Encodable as DTRAddr, so only two instructions needed.
ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2);
ma_str(scratch2, DTRAddr(scratch, DtrOffImm(typeoffset)));
} else {
// Since there are only two scratch registers, the offset must be
// applied early using a third instruction to be safe.
ma_add(Imm32(typeoffset), scratch, scratch2);
ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2);
ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
}
}
void storeValue(JSValueType type, Register reg, Address dest) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_str(reg, dest, scratch2);
ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch);
ma_str(scratch, Address(dest.base, dest.offset + NUNBOX32_TYPE_OFFSET),
scratch2);
}
void storeValue(const Value& val, const Address& dest) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_mov(Imm32(val.toNunboxTag()), scratch);
ma_str(scratch, ToType(dest), scratch2);
if (val.isGCThing()) {
ma_mov(ImmGCPtr(val.toGCThing()), scratch);
} else {
ma_mov(Imm32(val.toNunboxPayload()), scratch);
}
ma_str(scratch, ToPayload(dest), scratch2);
}
void storeValue(const Value& val, BaseIndex dest) {
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
int32_t typeoffset = dest.offset + NUNBOX32_TYPE_OFFSET;
int32_t payloadoffset = dest.offset + NUNBOX32_PAYLOAD_OFFSET;
ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
// Store the type.
if (typeoffset < 4096 && typeoffset > -4096) {
ma_mov(Imm32(val.toNunboxTag()), scratch2);
ma_str(scratch2, DTRAddr(scratch, DtrOffImm(typeoffset)));
} else {
ma_add(Imm32(typeoffset), scratch, scratch2);
ma_mov(Imm32(val.toNunboxTag()), scratch2);
ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
// Restore scratch for the payload store.
ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
}
// Store the payload, marking if necessary.
if (payloadoffset < 4096 && payloadoffset > -4096) {
if (val.isGCThing()) {
ma_mov(ImmGCPtr(val.toGCThing()), scratch2);
} else {
ma_mov(Imm32(val.toNunboxPayload()), scratch2);
}
ma_str(scratch2, DTRAddr(scratch, DtrOffImm(payloadoffset)));
} else {
ma_add(Imm32(payloadoffset), scratch, scratch2);
if (val.isGCThing()) {
ma_mov(ImmGCPtr(val.toGCThing()), scratch2);
} else {
ma_mov(Imm32(val.toNunboxPayload()), scratch2);
}
ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
}
}
void storeValue(const Address& src, const Address& dest, Register temp) {
load32(ToType(src), temp);
store32(temp, ToType(dest));
load32(ToPayload(src), temp);
store32(temp, ToPayload(dest));
}
void loadValue(Address src, ValueOperand val);
void loadValue(Operand dest, ValueOperand val) {
loadValue(dest.toAddress(), val);
}
void loadValue(const BaseIndex& addr, ValueOperand val);
// Like loadValue but guaranteed to not use LDRD or LDM instructions (these
// don't support unaligned accesses).
void loadUnalignedValue(const Address& src, ValueOperand dest);
void tagValue(JSValueType type, Register payload, ValueOperand dest);
void pushValue(ValueOperand val);
void popValue(ValueOperand val);
void pushValue(const Value& val) {
push(Imm32(val.toNunboxTag()));
if (val.isGCThing()) {
push(ImmGCPtr(val.toGCThing()));
} else {
push(Imm32(val.toNunboxPayload()));
}
}
void pushValue(JSValueType type, Register reg) {
push(ImmTag(JSVAL_TYPE_TO_TAG(type)));
ma_push(reg);
}
void pushValue(const Address& addr);
void storePayload(const Value& val, const Address& dest);
void storePayload(Register src, const Address& dest);
void storePayload(const Value& val, const BaseIndex& dest);
void storePayload(Register src, const BaseIndex& dest);
void storeTypeTag(ImmTag tag, const Address& dest);
void storeTypeTag(ImmTag tag, const BaseIndex& dest);
void handleFailureWithHandlerTail(void* handler, Label* profilerExitTail);
/////////////////////////////////////////////////////////////////
// Common interface.
/////////////////////////////////////////////////////////////////
public:
void not32(Register reg);
void move32(Imm32 imm, Register dest);
void move32(Register src, Register dest);
void movePtr(Register src, Register dest);
void movePtr(ImmWord imm, Register dest);
void movePtr(ImmPtr imm, Register dest);
void movePtr(wasm::SymbolicAddress imm, Register dest);
void movePtr(ImmGCPtr imm, Register dest);
void load8SignExtend(const Address& address, Register dest);
void load8SignExtend(const BaseIndex& src, Register dest);
void load8ZeroExtend(const Address& address, Register dest);
void load8ZeroExtend(const BaseIndex& src, Register dest);
void load16SignExtend(const Address& address, Register dest);
void load16SignExtend(const BaseIndex& src, Register dest);
template <typename S>
void load16UnalignedSignExtend(const S& src, Register dest) {
// load16SignExtend uses |ldrsh|, which supports unaligned access.
load16SignExtend(src, dest);
}
void load16ZeroExtend(const Address& address, Register dest);
void load16ZeroExtend(const BaseIndex& src, Register dest);
template <typename S>
void load16UnalignedZeroExtend(const S& src, Register dest) {
// load16ZeroExtend uses |ldrh|, which supports unaligned access.
load16ZeroExtend(src, dest);
}
void load32(const Address& address, Register dest);
void load32(const BaseIndex& address, Register dest);
void load32(AbsoluteAddress address, Register dest);
template <typename S>
void load32Unaligned(const S& src, Register dest) {
// load32 uses |ldr|, which supports unaligned access.
load32(src, dest);
}
void load64(const Address& address, Register64 dest) {
load32(LowWord(address), dest.low);
load32(HighWord(address), dest.high);
}
void load64(const BaseIndex& address, Register64 dest) {
load32(LowWord(address), dest.low);
load32(HighWord(address), dest.high);
}
template <typename S>
void load64Unaligned(const S& src, Register64 dest) {
// load64 calls load32, which supports unaligned accesses.
load64(src, dest);
}
void loadPtr(const Address& address, Register dest);
void loadPtr(const BaseIndex& src, Register dest);
void loadPtr(AbsoluteAddress address, Register dest);
void loadPtr(wasm::SymbolicAddress address, Register dest);
void loadPrivate(const Address& address, Register dest);
void loadDouble(const Address& addr, FloatRegister dest);
void loadDouble(const BaseIndex& src, FloatRegister dest);
// Load a float value into a register, then expand it to a double.
void loadFloatAsDouble(const Address& addr, FloatRegister dest);
void loadFloatAsDouble(const BaseIndex& src, FloatRegister dest);
void loadFloat32(const Address& addr, FloatRegister dest);
void loadFloat32(const BaseIndex& src, FloatRegister dest);
void store8(Register src, const Address& address);
void store8(Imm32 imm, const Address& address);
void store8(Register src, const BaseIndex& address);
void store8(Imm32 imm, const BaseIndex& address);
void store16(Register src, const Address& address);
void store16(Imm32 imm, const Address& address);
void store16(Register src, const BaseIndex& address);
void store16(Imm32 imm, const BaseIndex& address);
template <typename S, typename T>
void store16Unaligned(const S& src, const T& dest) {
// store16 uses |strh|, which supports unaligned access.
store16(src, dest);
}
void store32(Register src, AbsoluteAddress address);
void store32(Register src, const Address& address);
void store32(Register src, const BaseIndex& address);
void store32(Imm32 src, const Address& address);
void store32(Imm32 src, const BaseIndex& address);
template <typename S, typename T>
void store32Unaligned(const S& src, const T& dest) {
// store32 uses |str|, which supports unaligned access.
store32(src, dest);
}
void store64(Register64 src, Address address) {
store32(src.low, LowWord(address));
store32(src.high, HighWord(address));
}
void store64(Register64 src, const BaseIndex& address) {
store32(src.low, LowWord(address));
store32(src.high, HighWord(address));
}
void store64(Imm64 imm, Address address) {
store32(imm.low(), LowWord(address));
store32(imm.hi(), HighWord(address));
}
void store64(Imm64 imm, const BaseIndex& address) {
store32(imm.low(), LowWord(address));
store32(imm.hi(), HighWord(address));
}
template <typename S, typename T>
void store64Unaligned(const S& src, const T& dest) {
// store64 calls store32, which supports unaligned access.
store64(src, dest);
}
void storePtr(ImmWord imm, const Address& address);
void storePtr(ImmWord imm, const BaseIndex& address);
void storePtr(ImmPtr imm, const Address& address);
void storePtr(ImmPtr imm, const BaseIndex& address);
void storePtr(ImmGCPtr imm, const Address& address);
void storePtr(ImmGCPtr imm, const BaseIndex& address);
void storePtr(Register src, const Address& address);
void storePtr(Register src, const BaseIndex& address);
void storePtr(Register src, AbsoluteAddress dest);
void moveDouble(FloatRegister src, FloatRegister dest,
Condition cc = Always) {
ma_vmov(src, dest, cc);
}
inline void incrementInt32Value(const Address& addr);
void cmp32(Register lhs, Imm32 rhs);
void cmp32(Register lhs, Register rhs);
void cmp32(const Address& lhs, Imm32 rhs);
void cmp32(const Address& lhs, Register rhs);
void cmpPtr(Register lhs, Register rhs);
void cmpPtr(Register lhs, ImmWord rhs);
void cmpPtr(Register lhs, ImmPtr rhs);
void cmpPtr(Register lhs, ImmGCPtr rhs);
void cmpPtr(Register lhs, Imm32 rhs);
void cmpPtr(const Address& lhs, Register rhs);
void cmpPtr(const Address& lhs, ImmWord rhs);
void cmpPtr(const Address& lhs, ImmPtr rhs);
void cmpPtr(const Address& lhs, ImmGCPtr rhs);
void cmpPtr(const Address& lhs, Imm32 rhs);
void setStackArg(Register reg, uint32_t arg);
void breakpoint();
// Conditional breakpoint.
void breakpoint(Condition cc);
// Trigger the simulator's interactive read-eval-print loop.
// The message will be printed at the stopping point.
// (On non-simulator builds, does nothing.)
void simulatorStop(const char* msg);
// Evaluate srcDest = minmax<isMax>{Float32,Double}(srcDest, other).
// Checks for NaN if canBeNaN is true.
void minMaxDouble(FloatRegister srcDest, FloatRegister other, bool canBeNaN,
bool isMax);
void minMaxFloat32(FloatRegister srcDest, FloatRegister other, bool canBeNaN,
bool isMax);
void compareDouble(FloatRegister lhs, FloatRegister rhs);
void compareFloat(FloatRegister lhs, FloatRegister rhs);
void checkStackAlignment();
// If source is a double, load it into dest. If source is int32, convert it
// to double. Else, branch to failure.
void ensureDouble(const ValueOperand& source, FloatRegister dest,
Label* failure);
void emitSet(Assembler::Condition cond, Register dest) {
ma_mov(Imm32(0), dest);
ma_mov(Imm32(1), dest, cond);
}
void testNullSet(Condition cond, const ValueOperand& value, Register dest) {
cond = testNull(cond, value);
emitSet(cond, dest);
}
void testObjectSet(Condition cond, const ValueOperand& value, Register dest) {
cond = testObject(cond, value);
emitSet(cond, dest);
}
void testUndefinedSet(Condition cond, const ValueOperand& value,
Register dest) {
cond = testUndefined(cond, value);
emitSet(cond, dest);
}
protected:
bool buildOOLFakeExitFrame(void* fakeReturnAddr);
public:
void computeEffectiveAddress(const Address& address, Register dest) {
ScratchRegisterScope scratch(asMasm());
ma_add(address.base, Imm32(address.offset), dest, scratch, LeaveCC);
}
void computeEffectiveAddress(const BaseIndex& address, Register dest) {
ScratchRegisterScope scratch(asMasm());
ma_alu(address.base, lsl(address.index, address.scale), dest, OpAdd,
LeaveCC);
if (address.offset) {
ma_add(dest, Imm32(address.offset), dest, scratch, LeaveCC);
}
}
void floor(FloatRegister input, Register output, Label* handleNotAnInt);
void floorf(FloatRegister input, Register output, Label* handleNotAnInt);
void ceil(FloatRegister input, Register output, Label* handleNotAnInt);
void ceilf(FloatRegister input, Register output, Label* handleNotAnInt);
void round(FloatRegister input, Register output, Label* handleNotAnInt,
FloatRegister tmp);
void roundf(FloatRegister input, Register output, Label* handleNotAnInt,
FloatRegister tmp);
void trunc(FloatRegister input, Register output, Label* handleNotAnInt);
void truncf(FloatRegister input, Register output, Label* handleNotAnInt);
void clampCheck(Register r, Label* handleNotAnInt) {
// Check explicitly for r == INT_MIN || r == INT_MAX
// This is the instruction sequence that gcc generated for this
// operation.
ScratchRegisterScope scratch(asMasm());
SecondScratchRegisterScope scratch2(asMasm());
ma_sub(r, Imm32(0x80000001), scratch, scratch2);
as_cmn(scratch, Imm8(3));
ma_b(handleNotAnInt, Above);
}
void lea(Operand addr, Register dest) {
ScratchRegisterScope scratch(asMasm());
ma_add(addr.baseReg(), Imm32(addr.disp()), dest, scratch);
}
void abiret() { as_bx(lr); }
void moveFloat32(FloatRegister src, FloatRegister dest,
Condition cc = Always) {
as_vmov(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(),
cc);
}
void loadWasmGlobalPtr(uint32_t globalDataOffset, Register dest) {
loadPtr(Address(WasmTlsReg,
offsetof(wasm::TlsData, globalArea) + globalDataOffset),
dest);
}
void loadWasmPinnedRegsFromTls() {
ScratchRegisterScope scratch(asMasm());
ma_ldr(Address(WasmTlsReg, offsetof(wasm::TlsData, memoryBase)), HeapReg,
scratch);
}
// Instrumentation for entering and leaving the profiler.
void profilerEnterFrame(Register framePtr, Register scratch);
void profilerExitFrame();
};
typedef MacroAssemblerARMCompat MacroAssemblerSpecific;
} // namespace jit
} // namespace js
#endif /* jit_arm_MacroAssembler_arm_h */