Source code

Revision control

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/arm/Lowering-arm.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/arm/Assembler-arm.h"
#include "jit/Lowering.h"
#include "jit/MIR.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::FloorLog2;
LBoxAllocation LIRGeneratorARM::useBoxFixed(MDefinition* mir, Register reg1,
Register reg2, bool useAtStart) {
MOZ_ASSERT(mir->type() == MIRType::Value);
MOZ_ASSERT(reg1 != reg2);
ensureDefined(mir);
return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart),
LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
}
LAllocation LIRGeneratorARM::useByteOpRegister(MDefinition* mir) {
return useRegister(mir);
}
LAllocation LIRGeneratorARM::useByteOpRegisterAtStart(MDefinition* mir) {
return useRegisterAtStart(mir);
}
LAllocation LIRGeneratorARM::useByteOpRegisterOrNonDoubleConstant(
MDefinition* mir) {
return useRegisterOrNonDoubleConstant(mir);
}
LDefinition LIRGeneratorARM::tempByteOpRegister() { return temp(); }
void LIRGenerator::visitBox(MBox* box) {
MDefinition* inner = box->getOperand(0);
// If the box wrapped a double, it needs a new register.
if (IsFloatingPointType(inner->type())) {
defineBox(new (alloc()) LBoxFloatingPoint(
useRegisterAtStart(inner), tempCopy(inner, 0), inner->type()),
box);
return;
}
if (box->canEmitAtUses()) {
emitAtUses(box);
return;
}
if (inner->isConstant()) {
defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box);
return;
}
LBox* lir = new (alloc()) LBox(use(inner), inner->type());
// Otherwise, we should not define a new register for the payload portion
// of the output, so bypass defineBox().
uint32_t vreg = getVirtualRegister();
// Note that because we're using BogusTemp(), we do not change the type of
// the definition. We also do not define the first output as "TYPE",
// because it has no corresponding payload at (vreg + 1). Also note that
// although we copy the input's original type for the payload half of the
// definition, this is only for clarity. BogusTemp() definitions are
// ignored.
lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
lir->setDef(1, LDefinition::BogusTemp());
box->setVirtualRegister(vreg);
add(lir);
}
void LIRGenerator::visitUnbox(MUnbox* unbox) {
MDefinition* inner = unbox->getOperand(0);
// An unbox on arm reads in a type tag (either in memory or a register) and
// a payload. Unlike most instructions consuming a box, we ask for the type
// second, so that the result can re-use the first input.
MOZ_ASSERT(inner->type() == MIRType::Value);
ensureDefined(inner);
if (IsFloatingPointType(unbox->type())) {
LUnboxFloatingPoint* lir =
new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type());
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
define(lir, unbox);
return;
}
// Swap the order we use the box pieces so we can re-use the payload register.
LUnbox* lir = new (alloc()) LUnbox;
lir->setOperand(0, usePayloadInRegisterAtStart(inner));
lir->setOperand(1, useType(inner, LUse::REGISTER));
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
// Types and payloads form two separate intervals. If the type becomes dead
// before the payload, it could be used as a Value without the type being
// recoverable. Unbox's purpose is to eagerly kill the definition of a type
// tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
// Instead, we create a new virtual register.
defineReuseInput(lir, unbox, 0);
}
void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
MOZ_ASSERT(opd->type() == MIRType::Value);
LReturn* ins = new (alloc()) LReturn(isGenerator);
ins->setOperand(0, LUse(JSReturnReg_Type));
ins->setOperand(1, LUse(JSReturnReg_Data));
fillBoxUses(ins, 0, opd);
add(ins);
}
void LIRGeneratorARM::defineInt64Phi(MPhi* phi, size_t lirIndex) {
LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX);
LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX);
uint32_t lowVreg = getVirtualRegister();
phi->setVirtualRegister(lowVreg);
uint32_t highVreg = getVirtualRegister();
MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX);
low->setDef(0, LDefinition(lowVreg, LDefinition::INT32));
high->setDef(0, LDefinition(highVreg, LDefinition::INT32));
annotate(high);
annotate(low);
}
void LIRGeneratorARM::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX);
LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX);
low->setOperand(inputPosition,
LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY));
high->setOperand(
inputPosition,
LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY));
}
// x = !y
void LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input) {
ins->setOperand(
0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
// z = x+y
void LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
// Some operations depend on checking inputs after writing the result, e.g.
// MulI, but only for bail out paths so useAtStart when no bailouts.
ins->setOperand(0,
ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs));
ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs)
: useRegisterOrConstantAtStart(rhs));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
void LIRGeneratorARM::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorARM::lowerForMulInt64(LMulI64* ins, MMul* mir,
MDefinition* lhs, MDefinition* rhs) {
bool needsTemp = true;
if (rhs->isConstant()) {
int64_t constant = rhs->toConstant()->toInt64();
int32_t shift = mozilla::FloorLog2(constant);
// See special cases in CodeGeneratorARM::visitMulI64
if (constant >= -1 && constant <= 2) {
needsTemp = false;
}
if (constant > 0 && int64_t(1) << shift == constant) {
needsTemp = false;
}
}
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
if (needsTemp) {
ins->setTemp(0, temp());
}
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input) {
ins->setOperand(0, useRegisterAtStart(input));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template <size_t Temps>
void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegisterAtStart(lhs));
ins->setOperand(1, useRegisterAtStart(rhs));
define(
ins, mir,
LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs);
template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 1>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs);
void LIRGeneratorARM::lowerForBitAndAndBranch(LBitAndAndBranch* baab,
MInstruction* mir,
MDefinition* lhs,
MDefinition* rhs) {
baab->setOperand(0, useRegisterAtStart(lhs));
baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
add(baab, mir);
}
void LIRGeneratorARM::lowerWasmBuiltinTruncateToInt32(
MWasmBuiltinTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
if (opd->type() == MIRType::Double) {
define(new (alloc()) LWasmBuiltinTruncateDToInt32(
useRegister(opd), useFixedAtStart(ins->tls(), WasmTlsReg),
LDefinition::BogusTemp()),
ins);
return;
}
define(new (alloc()) LWasmBuiltinTruncateFToInt32(
useRegister(opd), useFixedAtStart(ins->tls(), WasmTlsReg),
LDefinition::BogusTemp()),
ins);
}
void LIRGeneratorARM::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
type->setOperand(
inputPosition,
LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
payload->setOperand(inputPosition,
LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
}
void LIRGeneratorARM::lowerForShift(LInstructionHelper<1, 2, 0>* ins,
MDefinition* mir, MDefinition* lhs,
MDefinition* rhs) {
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(ins, mir);
}
template <size_t Temps>
void LIRGeneratorARM::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
if (mir->isRotate() && !rhs->isConstant()) {
ins->setTemp(0, temp());
}
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs));
defineInt64ReuseInput(ins, mir, 0);
}
template void LIRGeneratorARM::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
template void LIRGeneratorARM::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
void LIRGeneratorARM::lowerDivI(MDiv* div) {
if (div->isUnsigned()) {
lowerUDiv(div);
return;
}
// Division instructions are slow. Division by constant denominators can be
// rewritten to use other instructions.
if (div->rhs()->isConstant()) {
int32_t rhs = div->rhs()->toConstant()->toInt32();
// Check for division by a positive power of two, which is an easy and
// important case to optimize. Note that other optimizations are also
// possible; division by negative powers of two can be optimized in a
// similar manner as positive powers of two, and division by other
// constants can be optimized by a reciprocal multiplication technique.
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LDivPowTwoI* lir =
new (alloc()) LDivPowTwoI(useRegisterAtStart(div->lhs()), shift);
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
}
if (HasIDIV()) {
LDivI* lir = new (alloc())
LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
LSoftDivI* lir = new (alloc()) LSoftDivI(useFixedAtStart(div->lhs(), r0),
useFixedAtStart(div->rhs(), r1));
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
defineReturn(lir, div);
}
void LIRGeneratorARM::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs) {
LMulI* lir = new (alloc()) LMulI;
if (mul->fallible()) {
assignSnapshot(lir, mul->bailoutKind());
}
lowerForALU(lir, mul, lhs, rhs);
}
void LIRGeneratorARM::lowerModI(MMod* mod) {
if (mod->isUnsigned()) {
lowerUMod(mod);
return;
}
if (mod->rhs()->isConstant()) {
int32_t rhs = mod->rhs()->toConstant()->toInt32();
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LModPowTwoI* lir =
new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
}
if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) {
MOZ_ASSERT(rhs);
LModMaskI* lir = new (alloc())
LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift + 1);
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
}
}
if (HasIDIV()) {
LModI* lir =
new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
}
LSoftModI* lir =
new (alloc()) LSoftModI(useFixedAtStart(mod->lhs(), r0),
useFixedAtStart(mod->rhs(), r1), tempFixed(r2));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
defineReturn(lir, mod);
}
void LIRGeneratorARM::lowerDivI64(MDiv* div) {
MOZ_CRASH("We use MWasmBuiltinDivI64 instead.");
}
void LIRGeneratorARM::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
if (div->isUnsigned()) {
LUDivOrModI64* lir =
new (alloc()) LUDivOrModI64(useInt64RegisterAtStart(div->lhs()),
useInt64RegisterAtStart(div->rhs()),
useFixedAtStart(div->tls(), WasmTlsReg));
defineReturn(lir, div);
return;
}
LDivOrModI64* lir = new (alloc()) LDivOrModI64(
useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs()),
useFixedAtStart(div->tls(), WasmTlsReg));
defineReturn(lir, div);
}
void LIRGeneratorARM::lowerModI64(MMod* mod) {
MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
}
void LIRGeneratorARM::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
if (mod->isUnsigned()) {
LUDivOrModI64* lir =
new (alloc()) LUDivOrModI64(useInt64RegisterAtStart(mod->lhs()),
useInt64RegisterAtStart(mod->rhs()),
useFixedAtStart(mod->tls(), WasmTlsReg));
defineReturn(lir, mod);
return;
}
LDivOrModI64* lir = new (alloc()) LDivOrModI64(
useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs()),
useFixedAtStart(mod->tls(), WasmTlsReg));
defineReturn(lir, mod);
}
void LIRGeneratorARM::lowerUDivI64(MDiv* div) {
MOZ_CRASH("We use MWasmBuiltinDivI64 instead.");
}
void LIRGeneratorARM::lowerUModI64(MMod* mod) {
MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
}
void LIRGenerator::visitPowHalf(MPowHalf* ins) {
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType::Double);
LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input));
defineReuseInput(lir, ins, 0);
}
LTableSwitch* LIRGeneratorARM::newLTableSwitch(const LAllocation& in,
const LDefinition& inputCopy,
MTableSwitch* tableswitch) {
return new (alloc()) LTableSwitch(in, inputCopy, tableswitch);
}
LTableSwitchV* LIRGeneratorARM::newLTableSwitchV(MTableSwitch* tableswitch) {
return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(),
tempDouble(), tableswitch);
}
void LIRGeneratorARM::lowerUrshD(MUrsh* mir) {
MDefinition* lhs = mir->lhs();
MDefinition* rhs = mir->rhs();
MOZ_ASSERT(lhs->type() == MIRType::Int32);
MOZ_ASSERT(rhs->type() == MIRType::Int32);
LUrshD* lir = new (alloc())
LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
define(lir, mir);
}
void LIRGeneratorARM::lowerPowOfTwoI(MPow* mir) {
int32_t base = mir->input()->toConstant()->toInt32();
MDefinition* power = mir->power();
auto* lir = new (alloc()) LPowOfTwoI(base, useRegister(power));
assignSnapshot(lir, mir->bailoutKind());
define(lir, mir);
}
void LIRGeneratorARM::lowerBigIntLsh(MBigIntLsh* ins) {
auto* lir = new (alloc()) LBigIntLsh(
useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorARM::lowerBigIntRsh(MBigIntRsh* ins) {
auto* lir = new (alloc()) LBigIntRsh(
useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorARM::lowerBigIntDiv(MBigIntDiv* ins) {
LDefinition temp1, temp2;
if (HasIDIV()) {
temp1 = temp();
temp2 = temp();
} else {
temp1 = tempFixed(r0);
temp2 = tempFixed(r1);
}
auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()),
useRegister(ins->rhs()), temp1, temp2);
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorARM::lowerBigIntMod(MBigIntMod* ins) {
LDefinition temp1, temp2;
if (HasIDIV()) {
temp1 = temp();
temp2 = temp();
} else {
temp1 = tempFixed(r0);
temp2 = tempFixed(r1);
}
auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()),
useRegister(ins->rhs()), temp1, temp2);
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitWasmNeg(MWasmNeg* ins) {
if (ins->type() == MIRType::Int32) {
define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
} else if (ins->type() == MIRType::Float32) {
define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
} else {
MOZ_ASSERT(ins->type() == MIRType::Double);
define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
}
}
void LIRGeneratorARM::lowerUDiv(MDiv* div) {
MDefinition* lhs = div->getOperand(0);
MDefinition* rhs = div->getOperand(1);
if (HasIDIV()) {
LUDiv* lir = new (alloc()) LUDiv;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
define(lir, div);
return;
}
LSoftUDivOrMod* lir = new (alloc())
LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1));
if (div->fallible()) {
assignSnapshot(lir, div->bailoutKind());
}
defineReturn(lir, div);
}
void LIRGeneratorARM::lowerUMod(MMod* mod) {
MDefinition* lhs = mod->getOperand(0);
MDefinition* rhs = mod->getOperand(1);
if (HasIDIV()) {
LUMod* lir = new (alloc()) LUMod;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
define(lir, mod);
return;
}
LSoftUDivOrMod* lir = new (alloc())
LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1));
if (mod->fallible()) {
assignSnapshot(lir, mod->bailoutKind());
}
defineReturn(lir, mod);
}
void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToDouble* lir =
new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToFloat32* lir =
new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) {
auto* lir = new (alloc()) LWasmHeapBase(LAllocation());
define(lir, ins);
}
void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
auto* lir = new (alloc()) LWasmAtomicLoadI64(useRegisterAtStart(base));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(IntArgReg1)),
LAllocation(AnyRegister(IntArgReg0))));
return;
}
LAllocation ptr = useRegisterAtStart(base);
if (IsUnaligned(ins->access())) {
MOZ_ASSERT(!ins->access().isAtomic());
// Unaligned access expected! Revert to a byte load.
LDefinition ptrCopy = tempCopy(base, 0);
LDefinition noTemp = LDefinition::BogusTemp();
if (ins->type() == MIRType::Int64) {
auto* lir = new (alloc())
LWasmUnalignedLoadI64(ptr, ptrCopy, temp(), noTemp, noTemp);
defineInt64(lir, ins);
return;
}
LDefinition temp2 = noTemp;
LDefinition temp3 = noTemp;
if (IsFloatingPointType(ins->type())) {
// For putting the low value in a GPR.
temp2 = temp();
// For putting the high value in a GPR.
if (ins->type() == MIRType::Double) {
temp3 = temp();
}
}
auto* lir =
new (alloc()) LWasmUnalignedLoad(ptr, ptrCopy, temp(), temp2, temp3);
define(lir, ins);
return;
}
if (ins->type() == MIRType::Int64) {
auto* lir = new (alloc()) LWasmLoadI64(ptr);
if (ins->access().offset() || ins->access().type() == Scalar::Int64) {
lir->setTemp(0, tempCopy(base, 0));
}
defineInt64(lir, ins);
return;
}
auto* lir = new (alloc()) LWasmLoad(ptr);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
define(lir, ins);
}
void LIRGenerator::visitWasmStore(MWasmStore* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
auto* lir = new (alloc()) LWasmAtomicStoreI64(
useRegister(base),
useInt64Fixed(ins->value(), Register64(IntArgReg1, IntArgReg0)),
tempFixed(IntArgReg2), tempFixed(IntArgReg3));
add(lir, ins);
return;
}
LAllocation ptr = useRegisterAtStart(base);
if (IsUnaligned(ins->access())) {
MOZ_ASSERT(!ins->access().isAtomic());
// Unaligned access expected! Revert to a byte store.
LDefinition ptrCopy = tempCopy(base, 0);
MIRType valueType = ins->value()->type();
if (valueType == MIRType::Int64) {
LInt64Allocation value = useInt64RegisterAtStart(ins->value());
auto* lir =
new (alloc()) LWasmUnalignedStoreI64(ptr, value, ptrCopy, temp());
add(lir, ins);
return;
}
LAllocation value = useRegisterAtStart(ins->value());
LDefinition valueHelper = IsFloatingPointType(valueType)
? temp() // to do a FPU -> GPR move.
: tempCopy(base, 1); // to clobber the value.
auto* lir =
new (alloc()) LWasmUnalignedStore(ptr, value, ptrCopy, valueHelper);
add(lir, ins);
return;
}
if (ins->value()->type() == MIRType::Int64) {
LInt64Allocation value = useInt64RegisterAtStart(ins->value());
auto* lir = new (alloc()) LWasmStoreI64(ptr, value);
if (ins->access().offset() || ins->access().type() == Scalar::Int64) {
lir->setTemp(0, tempCopy(base, 0));
}
add(lir, ins);
return;
}
LAllocation value = useRegisterAtStart(ins->value());
auto* lir = new (alloc()) LWasmStore(ptr, value);
if (ins->access().offset()) {
lir->setTemp(0, tempCopy(base, 0));
}
add(lir, ins);
}
void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) {
MOZ_ASSERT(ins->offset() == 0);
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
// For the ARM it is best to keep the 'base' in a register if a bounds check
// is needed.
LAllocation baseAlloc;
LAllocation limitAlloc;
if (base->isConstant() && !ins->needsBoundsCheck()) {
// A bounds check is only skipped for a positive index.
MOZ_ASSERT(base->toConstant()->toInt32() >= 0);
baseAlloc = LAllocation(base->toConstant());
} else {
baseAlloc = useRegisterAtStart(base);
if (ins->needsBoundsCheck()) {
MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32);
limitAlloc = useRegisterAtStart(boundsCheckLimit);
}
}
define(new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc), ins);
}
void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) {
MOZ_ASSERT(ins->offset() == 0);
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
LAllocation baseAlloc;
LAllocation limitAlloc;
if (base->isConstant() && !ins->needsBoundsCheck()) {
MOZ_ASSERT(base->toConstant()->toInt32() >= 0);
baseAlloc = LAllocation(base->toConstant());
} else {
baseAlloc = useRegisterAtStart(base);
if (ins->needsBoundsCheck()) {
MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32);
limitAlloc = useRegisterAtStart(boundsCheckLimit);
}
}
add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()),
limitAlloc),
ins);
}
void LIRGeneratorARM::lowerTruncateDToInt32(MTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double);
define(new (alloc())
LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()),
ins);
}
void LIRGeneratorARM::lowerTruncateFToInt32(MTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Float32);
define(new (alloc())
LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()),
ins);
}
void LIRGenerator::visitAtomicExchangeTypedArrayElement(
MAtomicExchangeTypedArrayElement* ins) {
MOZ_ASSERT(HasLDSTREXBHD());
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation value = useRegister(ins->value());
if (Scalar::isBigIntType(ins->arrayType())) {
// The two register pairs must be distinct.
LInt64Definition temp1 = tempInt64Fixed(Register64(IntArgReg3, IntArgReg2));
LDefinition temp2 = tempFixed(IntArgReg1);
auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64(
elements, index, value, temp1, temp2);
defineFixed(lir, ins, LAllocation(AnyRegister(IntArgReg0)));
assignSafepoint(lir, ins);
return;
}
MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
MOZ_ASSERT(ins->type() == MIRType::Double);
tempDef = temp();
}
LAtomicExchangeTypedArrayElement* lir = new (alloc())
LAtomicExchangeTypedArrayElement(elements, index, value, tempDef);
define(lir, ins);
}
void LIRGenerator::visitAtomicTypedArrayElementBinop(
MAtomicTypedArrayElementBinop* ins) {
MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation value = useRegister(ins->value());
if (Scalar::isBigIntType(ins->arrayType())) {
// Wasm additionally pins the value register to `FetchOpVal64`, but it's
// unclear why this was deemed necessary.
LInt64Definition temp1 = tempInt64();
LInt64Definition temp2 = tempInt64Fixed(FetchOpTmp64);
if (ins->isForEffect()) {
auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64(
elements, index, value, temp1, temp2);
add(lir, ins);
return;
}
LInt64Definition temp3 = tempInt64Fixed(FetchOpOut64);
auto* lir = new (alloc()) LAtomicTypedArrayElementBinop64(
elements, index, value, temp1, temp2, temp3);
define(lir, ins);
assignSafepoint(lir, ins);
return;
}
if (ins->isForEffect()) {
LAtomicTypedArrayElementBinopForEffect* lir = new (alloc())
LAtomicTypedArrayElementBinopForEffect(elements, index, value,
/* flagTemp= */ temp());
add(lir, ins);
return;
}
// For a Uint32Array with a known double result we need a temp for
// the intermediate output.
//
// Optimization opportunity (bug 1077317): We can do better by
// allowing 'value' to remain as an imm32 if it is small enough to
// fit in an instruction.
LDefinition flagTemp = temp();
LDefinition outTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
outTemp = temp();
}
// On arm, map flagTemp to temp1 and outTemp to temp2, at least for now.
LAtomicTypedArrayElementBinop* lir = new (alloc())
LAtomicTypedArrayElementBinop(elements, index, value, flagTemp, outTemp);
define(lir, ins);
}
void LIRGenerator::visitCompareExchangeTypedArrayElement(
MCompareExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
const LAllocation newval = useRegister(ins->newval());
const LAllocation oldval = useRegister(ins->oldval());
if (Scalar::isBigIntType(ins->arrayType())) {
// The three register pairs must be distinct.
LInt64Definition temp1 = tempInt64Fixed(CmpXchgOld64);
LInt64Definition temp2 = tempInt64Fixed(CmpXchgNew64);
LInt64Definition temp3 = tempInt64Fixed(CmpXchgOut64);
auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64(
elements, index, oldval, newval, temp1, temp2, temp3);
define(lir, ins);
assignSafepoint(lir, ins);
return;
}
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
//
// Optimization opportunity (bug 1077317): We could do better by
// allowing oldval to remain an immediate, if it is small enough
// to fit in an instruction.
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
tempDef = temp();
}
LCompareExchangeTypedArrayElement* lir =
new (alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval,
newval, tempDef);
define(lir, ins);
}
void LIRGeneratorARM::lowerAtomicLoad64(MLoadUnboxedScalar* ins) {
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->storageType());
auto* lir = new (alloc())
LAtomicLoad64(elements, index, temp(),
tempInt64Fixed(Register64(IntArgReg1, IntArgReg0)));
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorARM::lowerAtomicStore64(MStoreUnboxedScalar* ins) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->writeType());
LAllocation value = useRegister(ins->value());
LInt64Definition temp1 = tempInt64Fixed(Register64(IntArgReg1, IntArgReg0));
LInt64Definition temp2 = tempInt64Fixed(Register64(IntArgReg3, IntArgReg2));
add(new (alloc()) LAtomicStore64(elements, index, value, temp1, temp2), ins);
}
void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
if (ins->access().type() == Scalar::Int64) {
// The three register pairs must be distinct.
auto* lir = new (alloc()) LWasmCompareExchangeI64(
useRegister(base), useInt64Fixed(ins->oldValue(), CmpXchgOld64),
useInt64Fixed(ins->newValue(), CmpXchgNew64));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(CmpXchgOutHi)),
LAllocation(AnyRegister(CmpXchgOutLo))));
return;
}
MOZ_ASSERT(ins->access().type() < Scalar::Float32);
MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints");
LWasmCompareExchangeHeap* lir = new (alloc())
LWasmCompareExchangeHeap(useRegister(base), useRegister(ins->oldValue()),
useRegister(ins->newValue()));
define(lir, ins);
}
void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
MOZ_ASSERT(ins->base()->type() == MIRType::Int32);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmAtomicExchangeI64(
useRegister(ins->base()), useInt64Fixed(ins->value(), XchgNew64),
ins->access());
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(XchgOutHi)),
LAllocation(AnyRegister(XchgOutLo))));
return;
}
MOZ_ASSERT(ins->access().type() < Scalar::Float32);
MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints");
const LAllocation base = useRegister(ins->base());
const LAllocation value = useRegister(ins->value());
define(new (alloc()) LWasmAtomicExchangeHeap(base, value), ins);
}
void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmAtomicBinopI64(
useRegister(ins->base()), useInt64Fixed(ins->value(), FetchOpVal64),
tempFixed(FetchOpTmpLo), tempFixed(FetchOpTmpHi), ins->access(),
ins->operation());
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(FetchOpOutHi)),
LAllocation(AnyRegister(FetchOpOutLo))));
return;
}
MOZ_ASSERT(ins->access().type() < Scalar::Float32);
MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints");
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
if (!ins->hasUses()) {
LWasmAtomicBinopHeapForEffect* lir =
new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base),
useRegister(ins->value()),
/* flagTemp= */ temp());
add(lir, ins);
return;
}
LWasmAtomicBinopHeap* lir = new (alloc())
LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()),
/* temp = */ LDefinition::BogusTemp(),
/* flagTemp= */ temp());
define(lir, ins);
}
void LIRGenerator::visitSubstr(MSubstr* ins) {
LSubstr* lir = new (alloc())
LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
useRegister(ins->length()), temp(), temp(), tempByteOpRegister());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
MOZ_CRASH("We don't use MWasmTruncateToInt64 for arm");
}
void LIRGeneratorARM::lowerWasmBuiltinTruncateToInt64(
MWasmBuiltinTruncateToInt64* ins) {
MDefinition* opd = ins->input();
MDefinition* tls = ins->tls();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
defineReturn(new (alloc()) LWasmTruncateToInt64(
useRegisterAtStart(opd), useFixedAtStart(tls, WasmTlsReg)),
ins);
}
void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
MOZ_CRASH("We use BuiltinInt64ToFloatingPoint instead.");
}
void LIRGeneratorARM::lowerBuiltinInt64ToFloatingPoint(
MBuiltinInt64ToFloatingPoint* ins) {
MOZ_ASSERT(ins->type() == MIRType::Double || ins->type() == MIRType::Float32);
auto* lir = new (alloc())
LInt64ToFloatingPointCall(useInt64RegisterAtStart(ins->input()),
useFixedAtStart(ins->tls(), WasmTlsReg));
defineReturn(lir, ins);
}
void LIRGenerator::visitCopySign(MCopySign* ins) {
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(IsFloatingPointType(lhs->type()));
MOZ_ASSERT(lhs->type() == rhs->type());
MOZ_ASSERT(lhs->type() == ins->type());
LInstructionHelper<1, 2, 2>* lir;
if (lhs->type() == MIRType::Double) {
lir = new (alloc()) LCopySignD();
} else {
lir = new (alloc()) LCopySignF();
}
lir->setTemp(0, temp());
lir->setTemp(1, temp());
lowerForFPU(lir, ins, lhs, rhs);
}
void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
auto* lir =
new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input()));
defineInt64(lir, ins);
LDefinition def(LDefinition::GENERAL, LDefinition::MUST_REUSE_INPUT);
def.setReusedInput(0);
def.setVirtualRegister(ins->virtualRegister());
lir->setDef(0, def);
}
void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
defineInt64(new (alloc())
LSignExtendInt64(useInt64RegisterAtStart(ins->input())),
ins);
}
void LIRGenerator::visitWasmBitselectSimd128(MWasmBitselectSimd128* ins) {
MOZ_CRASH("bitselect NYI");
}
void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) {
MOZ_CRASH("binary SIMD NYI");
}
bool MWasmBinarySimd128::specializeForConstantRhs() {
// Probably many we want to do here
return false;
}
void LIRGenerator::visitWasmBinarySimd128WithConstant(
MWasmBinarySimd128WithConstant* ins) {
MOZ_CRASH("binary SIMD with constant NYI");
}
void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) {
MOZ_CRASH("shift SIMD NYI");
}
void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) {
MOZ_CRASH("shuffle SIMD NYI");
}
void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) {
MOZ_CRASH("replace-lane SIMD NYI");
}
void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) {
MOZ_CRASH("scalar-to-SIMD NYI");
}
void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) {
MOZ_CRASH("unary SIMD NYI");
}
void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) {
MOZ_CRASH("reduce-SIMD NYI");
}
void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) {
MOZ_CRASH("load-lane SIMD NYI");
}
void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) {
MOZ_CRASH("store-lane SIMD NYI");
}