Source code

Revision control

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_arm_LIR_arm_h
#define jit_arm_LIR_arm_h
namespace js {
namespace jit {
class LBoxFloatingPoint : public LInstructionHelper<2, 1, 1> {
MIRType type_;
public:
LIR_HEADER(BoxFloatingPoint);
LBoxFloatingPoint(const LAllocation& in, const LDefinition& temp,
MIRType type)
: LInstructionHelper(classOpcode), type_(type) {
setOperand(0, in);
setTemp(0, temp);
}
MIRType type() const { return type_; }
const char* extraName() const { return StringFromMIRType(type_); }
};
class LUnbox : public LInstructionHelper<1, 2, 0> {
public:
LIR_HEADER(Unbox);
LUnbox() : LInstructionHelper(classOpcode) {}
MUnbox* mir() const { return mir_->toUnbox(); }
const LAllocation* payload() { return getOperand(0); }
const LAllocation* type() { return getOperand(1); }
const char* extraName() const { return StringFromMIRType(mir()->type()); }
};
class LUnboxFloatingPoint : public LInstructionHelper<1, 2, 0> {
MIRType type_;
public:
LIR_HEADER(UnboxFloatingPoint);
static const size_t Input = 0;
LUnboxFloatingPoint(const LBoxAllocation& input, MIRType type)
: LInstructionHelper(classOpcode), type_(type) {
setBoxOperand(Input, input);
}
MUnbox* mir() const { return mir_->toUnbox(); }
MIRType type() const { return type_; }
const char* extraName() const { return StringFromMIRType(type_); }
};
// Convert a 32-bit unsigned integer to a double.
class LWasmUint32ToDouble : public LInstructionHelper<1, 1, 0> {
public:
LIR_HEADER(WasmUint32ToDouble)
explicit LWasmUint32ToDouble(const LAllocation& input)
: LInstructionHelper(classOpcode) {
setOperand(0, input);
}
};
// Convert a 32-bit unsigned integer to a float32.
class LWasmUint32ToFloat32 : public LInstructionHelper<1, 1, 0> {
public:
LIR_HEADER(WasmUint32ToFloat32)
explicit LWasmUint32ToFloat32(const LAllocation& input)
: LInstructionHelper(classOpcode) {
setOperand(0, input);
}
};
class LDivI : public LBinaryMath<1> {
public:
LIR_HEADER(DivI);
LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
MDiv* mir() const { return mir_->toDiv(); }
};
class LDivOrModI64
: public LCallInstructionHelper<INT64_PIECES, INT64_PIECES * 2 + 1, 0> {
public:
LIR_HEADER(DivOrModI64)
static const size_t Lhs = 0;
static const size_t Rhs = INT64_PIECES;
static const size_t Tls = 2 * INT64_PIECES;
LDivOrModI64(const LInt64Allocation& lhs, const LInt64Allocation& rhs,
const LAllocation& tls)
: LCallInstructionHelper(classOpcode) {
setInt64Operand(Lhs, lhs);
setInt64Operand(Rhs, rhs);
setOperand(Tls, tls);
}
MDefinition* mir() const {
MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64());
return mir_;
}
bool canBeDivideByZero() const {
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->canBeDivideByZero();
}
return mir_->toWasmBuiltinDivI64()->canBeDivideByZero();
}
bool canBeNegativeOverflow() const {
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->canBeNegativeDividend();
}
return mir_->toWasmBuiltinDivI64()->canBeNegativeOverflow();
}
wasm::BytecodeOffset bytecodeOffset() const {
MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64());
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->bytecodeOffset();
}
return mir_->toWasmBuiltinDivI64()->bytecodeOffset();
}
};
class LUDivOrModI64
: public LCallInstructionHelper<INT64_PIECES, INT64_PIECES * 2 + 1, 0> {
public:
LIR_HEADER(UDivOrModI64)
static const size_t Lhs = 0;
static const size_t Rhs = INT64_PIECES;
static const size_t Tls = 2 * INT64_PIECES;
LUDivOrModI64(const LInt64Allocation& lhs, const LInt64Allocation& rhs,
const LAllocation& tls)
: LCallInstructionHelper(classOpcode) {
setInt64Operand(Lhs, lhs);
setInt64Operand(Rhs, rhs);
setOperand(Tls, tls);
}
MDefinition* mir() const {
MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64());
return mir_;
}
bool canBeDivideByZero() const {
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->canBeDivideByZero();
}
return mir_->toWasmBuiltinDivI64()->canBeDivideByZero();
}
bool canBeNegativeOverflow() const {
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->canBeNegativeDividend();
}
return mir_->toWasmBuiltinDivI64()->canBeNegativeOverflow();
}
wasm::BytecodeOffset bytecodeOffset() const {
MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64());
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->bytecodeOffset();
}
return mir_->toWasmBuiltinDivI64()->bytecodeOffset();
}
};
// LSoftDivI is a software divide for ARM cores that don't support a hardware
// divide instruction, implemented as a C++ native call.
class LSoftDivI : public LBinaryCallInstructionHelper<1, 0> {
public:
LIR_HEADER(SoftDivI);
LSoftDivI(const LAllocation& lhs, const LAllocation& rhs)
: LBinaryCallInstructionHelper(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
}
MDiv* mir() const { return mir_->toDiv(); }
};
class LDivPowTwoI : public LInstructionHelper<1, 1, 0> {
const int32_t shift_;
public:
LIR_HEADER(DivPowTwoI)
LDivPowTwoI(const LAllocation& lhs, int32_t shift)
: LInstructionHelper(classOpcode), shift_(shift) {
setOperand(0, lhs);
}
const LAllocation* numerator() { return getOperand(0); }
int32_t shift() { return shift_; }
MDiv* mir() const { return mir_->toDiv(); }
};
class LModI : public LBinaryMath<0> {
public:
LIR_HEADER(ModI);
LModI(const LAllocation& lhs, const LAllocation& rhs)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
}
MMod* mir() const { return mir_->toMod(); }
};
class LSoftModI : public LBinaryCallInstructionHelper<1, 1> {
public:
LIR_HEADER(SoftModI);
LSoftModI(const LAllocation& lhs, const LAllocation& rhs,
const LDefinition& temp)
: LBinaryCallInstructionHelper(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const LDefinition* callTemp() { return getTemp(0); }
MMod* mir() const { return mir_->toMod(); }
};
class LModPowTwoI : public LInstructionHelper<1, 1, 0> {
const int32_t shift_;
public:
LIR_HEADER(ModPowTwoI);
int32_t shift() { return shift_; }
LModPowTwoI(const LAllocation& lhs, int32_t shift)
: LInstructionHelper(classOpcode), shift_(shift) {
setOperand(0, lhs);
}
MMod* mir() const { return mir_->toMod(); }
};
class LModMaskI : public LInstructionHelper<1, 1, 2> {
const int32_t shift_;
public:
LIR_HEADER(ModMaskI);
LModMaskI(const LAllocation& lhs, const LDefinition& temp1,
const LDefinition& temp2, int32_t shift)
: LInstructionHelper(classOpcode), shift_(shift) {
setOperand(0, lhs);
setTemp(0, temp1);
setTemp(1, temp2);
}
int32_t shift() const { return shift_; }
MMod* mir() const { return mir_->toMod(); }
};
// Takes a tableswitch with an integer to decide.
class LTableSwitch : public LInstructionHelper<0, 1, 1> {
public:
LIR_HEADER(TableSwitch);
LTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
MTableSwitch* ins)
: LInstructionHelper(classOpcode) {
setOperand(0, in);
setTemp(0, inputCopy);
setMir(ins);
}
MTableSwitch* mir() const { return mir_->toTableSwitch(); }
const LAllocation* index() { return getOperand(0); }
const LDefinition* tempInt() { return getTemp(0); }
// This is added to share the same CodeGenerator prefixes.
const LDefinition* tempPointer() { return nullptr; }
};
// Takes a tableswitch with an integer to decide.
class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 2> {
public:
LIR_HEADER(TableSwitchV);
LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy,
const LDefinition& floatCopy, MTableSwitch* ins)
: LInstructionHelper(classOpcode) {
setBoxOperand(InputValue, input);
setTemp(0, inputCopy);
setTemp(1, floatCopy);
setMir(ins);
}
MTableSwitch* mir() const { return mir_->toTableSwitch(); }
static const size_t InputValue = 0;
const LDefinition* tempInt() { return getTemp(0); }
const LDefinition* tempFloat() { return getTemp(1); }
const LDefinition* tempPointer() { return nullptr; }
};
class LMulI : public LBinaryMath<0> {
public:
LIR_HEADER(MulI);
LMulI() : LBinaryMath(classOpcode) {}
MMul* mir() { return mir_->toMul(); }
};
class LUDiv : public LBinaryMath<0> {
public:
LIR_HEADER(UDiv);
LUDiv() : LBinaryMath(classOpcode) {}
MDiv* mir() { return mir_->toDiv(); }
};
class LUMod : public LBinaryMath<0> {
public:
LIR_HEADER(UMod);
LUMod() : LBinaryMath(classOpcode) {}
MMod* mir() { return mir_->toMod(); }
};
class LSoftUDivOrMod : public LBinaryCallInstructionHelper<1, 0> {
public:
LIR_HEADER(SoftUDivOrMod);
LSoftUDivOrMod(const LAllocation& lhs, const LAllocation& rhs)
: LBinaryCallInstructionHelper(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
}
MInstruction* mir() { return mir_->toInstruction(); }
};
class LWasmTruncateToInt64 : public LCallInstructionHelper<INT64_PIECES, 2, 0> {
static const size_t Input = 0;
static const size_t Tls = 1;
public:
LIR_HEADER(WasmTruncateToInt64);
LWasmTruncateToInt64(const LAllocation& in, const LAllocation& tls)
: LCallInstructionHelper(classOpcode) {
setOperand(Input, in);
setOperand(Tls, tls);
}
LAllocation* input() { return getOperand(Input); }
LAllocation* tls() { return getOperand(Tls); }
MWasmBuiltinTruncateToInt64* mir() const {
return mir_->toWasmBuiltinTruncateToInt64();
}
};
class LInt64ToFloatingPointCall
: public LCallInstructionHelper<1, INT64_PIECES + 1, 0> {
public:
LIR_HEADER(Int64ToFloatingPointCall);
static const size_t Input = 0;
static const size_t Tls = INT64_PIECES;
LInt64ToFloatingPointCall(const LInt64Allocation& in, const LAllocation& tls)
: LCallInstructionHelper(classOpcode) {
setInt64Operand(Input, in);
setOperand(Tls, tls);
}
LAllocation* input() { return getOperand(Input); }
LAllocation* tls() { return getOperand(Tls); }
MBuiltinInt64ToFloatingPoint* mir() const {
return mir_->toBuiltinInt64ToFloatingPoint();
}
};
namespace details {
// Base class for the int64 and non-int64 variants.
template <size_t NumDefs>
class LWasmUnalignedLoadBase : public details::LWasmLoadBase<NumDefs, 4> {
public:
typedef LWasmLoadBase<NumDefs, 4> Base;
explicit LWasmUnalignedLoadBase(LNode::Opcode opcode, const LAllocation& ptr,
const LDefinition& ptrCopy,
const LDefinition& temp1,
const LDefinition& temp2,
const LDefinition& temp3)
: Base(opcode, ptr, LAllocation()) {
Base::setTemp(0, ptrCopy);
Base::setTemp(1, temp1);
Base::setTemp(2, temp2);
Base::setTemp(3, temp3);
}
const LDefinition* ptrCopy() { return Base::getTemp(0); }
};
} // namespace details
class LWasmUnalignedLoad : public details::LWasmUnalignedLoadBase<1> {
public:
explicit LWasmUnalignedLoad(const LAllocation& ptr,
const LDefinition& ptrCopy,
const LDefinition& temp1,
const LDefinition& temp2,
const LDefinition& temp3)
: LWasmUnalignedLoadBase(classOpcode, ptr, ptrCopy, temp1, temp2, temp3) {
}
LIR_HEADER(WasmUnalignedLoad);
};
class LWasmUnalignedLoadI64
: public details::LWasmUnalignedLoadBase<INT64_PIECES> {
public:
explicit LWasmUnalignedLoadI64(const LAllocation& ptr,
const LDefinition& ptrCopy,
const LDefinition& temp1,
const LDefinition& temp2,
const LDefinition& temp3)
: LWasmUnalignedLoadBase(classOpcode, ptr, ptrCopy, temp1, temp2, temp3) {
}
LIR_HEADER(WasmUnalignedLoadI64);
};
namespace details {
// Base class for the int64 and non-int64 variants.
template <size_t NumOps>
class LWasmUnalignedStoreBase : public LInstructionHelper<0, NumOps, 2> {
public:
typedef LInstructionHelper<0, NumOps, 2> Base;
static const uint32_t ValueIndex = 1;
LWasmUnalignedStoreBase(LNode::Opcode opcode, const LAllocation& ptr,
const LDefinition& ptrCopy,
const LDefinition& valueHelper)
: Base(opcode) {
Base::setOperand(0, ptr);
Base::setTemp(0, ptrCopy);
Base::setTemp(1, valueHelper);
}
MWasmStore* mir() const { return Base::mir_->toWasmStore(); }
const LDefinition* ptrCopy() { return Base::getTemp(0); }
const LDefinition* valueHelper() { return Base::getTemp(1); }
};
} // namespace details
class LWasmUnalignedStore : public details::LWasmUnalignedStoreBase<2> {
public:
LIR_HEADER(WasmUnalignedStore);
LWasmUnalignedStore(const LAllocation& ptr, const LAllocation& value,
const LDefinition& ptrCopy,
const LDefinition& valueHelper)
: LWasmUnalignedStoreBase(classOpcode, ptr, ptrCopy, valueHelper) {
setOperand(1, value);
}
};
class LWasmUnalignedStoreI64
: public details::LWasmUnalignedStoreBase<1 + INT64_PIECES> {
public:
LIR_HEADER(WasmUnalignedStoreI64);
LWasmUnalignedStoreI64(const LAllocation& ptr, const LInt64Allocation& value,
const LDefinition& ptrCopy,
const LDefinition& valueHelper)
: LWasmUnalignedStoreBase(classOpcode, ptr, ptrCopy, valueHelper) {
setInt64Operand(1, value);
}
};
class LWasmAtomicLoadI64 : public LInstructionHelper<INT64_PIECES, 1, 0> {
public:
LIR_HEADER(WasmAtomicLoadI64);
explicit LWasmAtomicLoadI64(const LAllocation& ptr)
: LInstructionHelper(classOpcode) {
setOperand(0, ptr);
}
MWasmLoad* mir() const { return mir_->toWasmLoad(); }
const LAllocation* ptr() { return getOperand(0); }
};
class LWasmAtomicStoreI64 : public LInstructionHelper<0, 1 + INT64_PIECES, 2> {
public:
LIR_HEADER(WasmAtomicStoreI64);
LWasmAtomicStoreI64(const LAllocation& ptr, const LInt64Allocation& value,
const LDefinition& tmpLow, const LDefinition& tmpHigh)
: LInstructionHelper(classOpcode) {
setOperand(0, ptr);
setInt64Operand(1, value);
setTemp(0, tmpLow);
setTemp(1, tmpHigh);
}
MWasmStore* mir() const { return mir_->toWasmStore(); }
const LAllocation* ptr() { return getOperand(0); }
const LInt64Allocation value() { return getInt64Operand(1); }
const LDefinition* tmpLow() { return getTemp(0); }
const LDefinition* tmpHigh() { return getTemp(1); }
};
class LWasmCompareExchangeI64
: public LInstructionHelper<INT64_PIECES, 1 + 2 * INT64_PIECES, 0> {
public:
LIR_HEADER(WasmCompareExchangeI64);
LWasmCompareExchangeI64(const LAllocation& ptr,
const LInt64Allocation& expected,
const LInt64Allocation& replacement)
: LInstructionHelper(classOpcode) {
setOperand(0, ptr);
setInt64Operand(1, expected);
setInt64Operand(1 + INT64_PIECES, replacement);
}
MWasmCompareExchangeHeap* mir() const {
return mir_->toWasmCompareExchangeHeap();
}
const LAllocation* ptr() { return getOperand(0); }
const LInt64Allocation expected() { return getInt64Operand(1); }
const LInt64Allocation replacement() {
return getInt64Operand(1 + INT64_PIECES);
}
};
class LWasmAtomicBinopI64
: public LInstructionHelper<INT64_PIECES, 1 + INT64_PIECES, 2> {
const wasm::MemoryAccessDesc& access_;
AtomicOp op_;
public:
LIR_HEADER(WasmAtomicBinopI64);
LWasmAtomicBinopI64(const LAllocation& ptr, const LInt64Allocation& value,
const LDefinition& tmpLow, const LDefinition& tmpHigh,
const wasm::MemoryAccessDesc& access, AtomicOp op)
: LInstructionHelper(classOpcode), access_(access), op_(op) {
setOperand(0, ptr);
setInt64Operand(1, value);
setTemp(0, tmpLow);
setTemp(1, tmpHigh);
}
const LAllocation* ptr() { return getOperand(0); }
const LInt64Allocation value() { return getInt64Operand(1); }
const wasm::MemoryAccessDesc& access() { return access_; }
AtomicOp operation() const { return op_; }
const LDefinition* tmpLow() { return getTemp(0); }
const LDefinition* tmpHigh() { return getTemp(1); }
};
class LWasmAtomicExchangeI64
: public LInstructionHelper<INT64_PIECES, 1 + INT64_PIECES, 0> {
const wasm::MemoryAccessDesc& access_;
public:
LIR_HEADER(WasmAtomicExchangeI64);
LWasmAtomicExchangeI64(const LAllocation& ptr, const LInt64Allocation& value,
const wasm::MemoryAccessDesc& access)
: LInstructionHelper(classOpcode), access_(access) {
setOperand(0, ptr);
setInt64Operand(1, value);
}
const LAllocation* ptr() { return getOperand(0); }
const LInt64Allocation value() { return getInt64Operand(1); }
const wasm::MemoryAccessDesc& access() { return access_; }
};
} // namespace jit
} // namespace js
#endif /* jit_arm_LIR_arm_h */