Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#ifndef jit_RegisterSets_h
#define jit_RegisterSets_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Variant.h"
#include <new>
#include <stddef.h>
#include <stdint.h>
#include "jit/IonTypes.h"
#include "jit/Registers.h"
#include "js/Value.h"
namespace js {
namespace jit {
struct AnyRegister {
using Code = uint8_t;
static const uint8_t Total = Registers::Total + FloatRegisters::Total;
static const uint8_t FirstFloatReg = Registers::Total;
static const uint8_t Invalid = UINT8_MAX;
static_assert(size_t(Registers::Total) + FloatRegisters::Total <= UINT8_MAX,
"Number of registers must fit in uint8_t");
private:
Code code_;
public:
AnyRegister() : code_(Invalid) {}
explicit AnyRegister(Register gpr) { code_ = gpr.code(); }
explicit AnyRegister(FloatRegister fpu) {
code_ = fpu.code() + Registers::Total;
}
static AnyRegister FromCode(uint8_t i) {
MOZ_ASSERT(i < Total);
AnyRegister r;
r.code_ = i;
return r;
}
bool isFloat() const {
MOZ_ASSERT(isValid());
return code_ >= Registers::Total;
}
Register gpr() const {
MOZ_ASSERT(!isFloat());
return Register::FromCode(code_);
}
FloatRegister fpu() const {
MOZ_ASSERT(isFloat());
return FloatRegister::FromCode(code_ - Registers::Total);
}
bool operator==(AnyRegister other) const {
// We don't need the operands to be valid to test for equality.
return code_ == other.code_;
}
bool operator!=(AnyRegister other) const {
// We don't need the operands to be valid to test for equality.
return code_ != other.code_;
}
const char* name() const { return isFloat() ? fpu().name() : gpr().name(); }
Code code() const {
MOZ_ASSERT(isValid());
return code_;
}
bool volatile_() const {
return isFloat() ? fpu().volatile_() : gpr().volatile_();
}
AnyRegister aliased(uint8_t aliasIdx) const {
AnyRegister ret;
if (isFloat()) {
ret = AnyRegister(fpu().aliased(aliasIdx));
} else {
ret = AnyRegister(gpr().aliased(aliasIdx));
}
MOZ_ASSERT_IF(aliasIdx == 0, ret == *this);
return ret;
}
uint32_t numAliased() const {
if (isFloat()) {
return fpu().numAliased();
}
return gpr().numAliased();
}
bool aliases(const AnyRegister& other) const {
if (isFloat() && other.isFloat()) {
return fpu().aliases(other.fpu());
}
if (!isFloat() && !other.isFloat()) {
return gpr().aliases(other.gpr());
}
return false;
}
// do the two registers hold the same type of data (e.g. both float32, both
// gpr)
bool isCompatibleReg(const AnyRegister other) const {
if (isFloat() && other.isFloat()) {
return fpu().equiv(other.fpu());
}
if (!isFloat() && !other.isFloat()) {
return true;
}
return false;
}
bool isValid() const { return code_ != Invalid; }
};
// Registers to hold a boxed value. Uses one register on 64 bit
// platforms, two registers on 32 bit platforms.
class ValueOperand {
#if defined(JS_NUNBOX32)
Register type_;
Register payload_;
public:
constexpr ValueOperand(Register type, Register payload)
: type_(type), payload_(payload) {}
constexpr Register typeReg() const { return type_; }
constexpr Register payloadReg() const { return payload_; }
constexpr Register64 toRegister64() const {
return Register64(typeReg(), payloadReg());
}
constexpr bool aliases(Register reg) const {
return type_ == reg || payload_ == reg;
}
constexpr Register payloadOrValueReg() const { return payloadReg(); }
bool hasVolatileReg() const {
return type_.volatile_() || payload_.volatile_();
}
constexpr bool operator==(const ValueOperand& o) const {
return type_ == o.type_ && payload_ == o.payload_;
}
constexpr bool operator!=(const ValueOperand& o) const {
return !(*this == o);
}
#elif defined(JS_PUNBOX64)
Register value_;
public:
explicit constexpr ValueOperand(Register value) : value_(value) {}
constexpr Register valueReg() const { return value_; }
constexpr Register64 toRegister64() const { return Register64(valueReg()); }
constexpr bool aliases(Register reg) const { return value_ == reg; }
constexpr Register payloadOrValueReg() const { return valueReg(); }
bool hasVolatileReg() const { return value_.volatile_(); }
constexpr bool operator==(const ValueOperand& o) const {
return value_ == o.value_;
}
constexpr bool operator!=(const ValueOperand& o) const {
return !(*this == o);
}
#endif
constexpr Register scratchReg() const { return payloadOrValueReg(); }
ValueOperand() = default;
};
// Registers to hold either either a typed or untyped value.
class TypedOrValueRegister {
// Type of value being stored.
MIRType type_;
union U {
AnyRegister::Code typed;
#if defined(JS_PUNBOX64)
Register::Code value;
#elif defined(JS_NUNBOX32)
struct {
Register::Code valueType;
Register::Code valuePayload;
} s;
#else
# error "Bad architecture"
#endif
} data;
public:
TypedOrValueRegister() = default;
TypedOrValueRegister(MIRType type, AnyRegister reg) : type_(type) {
data.typed = reg.code();
}
MOZ_IMPLICIT TypedOrValueRegister(ValueOperand value)
: type_(MIRType::Value) {
#if defined(JS_PUNBOX64)
data.value = value.valueReg().code();
#elif defined(JS_NUNBOX32)
data.s.valueType = value.typeReg().code();
data.s.valuePayload = value.payloadReg().code();
#else
# error "Bad architecture"
#endif
}
MIRType type() const { return type_; }
bool hasTyped() const {
return type() != MIRType::None && type() != MIRType::Value;
}
bool hasValue() const { return type() == MIRType::Value; }
AnyRegister typedReg() const {
MOZ_ASSERT(hasTyped());
return AnyRegister::FromCode(data.typed);
}
ValueOperand valueReg() const {
MOZ_ASSERT(hasValue());
#if defined(JS_PUNBOX64)
return ValueOperand(Register::FromCode(data.value));
#elif defined(JS_NUNBOX32)
return ValueOperand(Register::FromCode(data.s.valueType),
Register::FromCode(data.s.valuePayload));
#else
# error "Bad architecture"
#endif
}
AnyRegister scratchReg() {
if (hasValue()) {
return AnyRegister(valueReg().scratchReg());
}
return typedReg();
}
};
// A constant value, or registers to hold a typed/untyped value.
class ConstantOrRegister {
// Whether a constant value is being stored.
bool constant_;
// Space to hold either a Value or a TypedOrValueRegister.
union U {
JS::Value constant;
TypedOrValueRegister reg;
// |constant| has a non-trivial constructor and therefore MUST be
// placement-new'd into existence.
MOZ_PUSH_DISABLE_NONTRIVIAL_UNION_WARNINGS
U() {}
MOZ_POP_DISABLE_NONTRIVIAL_UNION_WARNINGS
} data;
public:
ConstantOrRegister() = delete;
MOZ_IMPLICIT ConstantOrRegister(const JS::Value& value) : constant_(true) {
MOZ_ASSERT(constant());
new (&data.constant) JS::Value(value);
}
MOZ_IMPLICIT ConstantOrRegister(TypedOrValueRegister reg) : constant_(false) {
MOZ_ASSERT(!constant());
new (&data.reg) TypedOrValueRegister(reg);
}
bool constant() const { return constant_; }
JS::Value value() const {
MOZ_ASSERT(constant());
return data.constant;
}
const TypedOrValueRegister& reg() const {
MOZ_ASSERT(!constant());
return data.reg;
}
};
template <typename T>
class TypedRegisterSet {
public:
using RegType = T;
using SetType = typename T::SetType;
private:
SetType bits_;
public:
explicit constexpr TypedRegisterSet(SetType bits) : bits_(bits) {}
constexpr TypedRegisterSet() : bits_(0) {}
constexpr TypedRegisterSet(const TypedRegisterSet<T>& set)
: bits_(set.bits_) {}
static inline TypedRegisterSet All() {
return TypedRegisterSet(T::Codes::AllocatableMask);
}
static inline TypedRegisterSet Intersect(const TypedRegisterSet& lhs,
const TypedRegisterSet& rhs) {
return TypedRegisterSet(lhs.bits_ & rhs.bits_);
}
static inline TypedRegisterSet Union(const TypedRegisterSet& lhs,
const TypedRegisterSet& rhs) {
return TypedRegisterSet(lhs.bits_ | rhs.bits_);
}
static inline TypedRegisterSet Not(const TypedRegisterSet& in) {
return TypedRegisterSet(~in.bits_ & T::Codes::AllocatableMask);
}
static inline TypedRegisterSet Subtract(const TypedRegisterSet& lhs,
const TypedRegisterSet& rhs) {
return TypedRegisterSet(lhs.bits_ & ~rhs.bits_);
}
static inline TypedRegisterSet VolatileNot(const TypedRegisterSet& in) {
const SetType allocatableVolatile =
T::Codes::AllocatableMask & T::Codes::VolatileMask;
return TypedRegisterSet(~in.bits_ & allocatableVolatile);
}
static inline TypedRegisterSet Volatile() {
return TypedRegisterSet(T::Codes::AllocatableMask & T::Codes::VolatileMask);
}
static inline TypedRegisterSet NonVolatile() {
return TypedRegisterSet(T::Codes::AllocatableMask &
T::Codes::NonVolatileMask);
}
bool empty() const { return !bits_; }
void clear() { bits_ = 0; }
bool hasRegisterIndex(T reg) const {
return !!(bits_ & (SetType(1) << reg.code()));
}
bool hasAllocatable(T reg) const {
return !(~bits_ & reg.alignedOrDominatedAliasedSet());
}
void addRegisterIndex(T reg) { bits_ |= (SetType(1) << reg.code()); }
void addAllocatable(T reg) { bits_ |= reg.alignedOrDominatedAliasedSet(); }
void takeRegisterIndex(T reg) { bits_ &= ~(SetType(1) << reg.code()); }
void takeAllocatable(T reg) { bits_ &= ~reg.alignedOrDominatedAliasedSet(); }
static constexpr RegTypeName DefaultType = RegType::DefaultType;
template <RegTypeName Name>
SetType allLive() const {
return T::template LiveAsIndexableSet<Name>(bits_);
}
template <RegTypeName Name>
SetType allAllocatable() const {
return T::template AllocatableAsIndexableSet<Name>(bits_);
}
static RegType FirstRegister(SetType set) {
return RegType::FromCode(RegType::FirstBit(set));
}
static RegType LastRegister(SetType set) {
return RegType::FromCode(RegType::LastBit(set));
}
SetType bits() const { return bits_; }
uint32_t size() const { return T::SetSize(bits_); }
bool operator==(const TypedRegisterSet<T>& other) const {
return other.bits_ == bits_;
}
TypedRegisterSet<T> reduceSetForPush() const {
return T::ReduceSetForPush(*this);
}
uint32_t getPushSizeInBytes() const { return T::GetPushSizeInBytes(*this); }
size_t offsetOfPushedRegister(RegType reg) const {
MOZ_ASSERT(hasRegisterIndex(reg));
return T::OffsetOfPushedRegister(bits(), reg);
}
};
using GeneralRegisterSet = TypedRegisterSet<Register>;
using FloatRegisterSet = TypedRegisterSet<FloatRegister>;
class AnyRegisterIterator;
class RegisterSet {
GeneralRegisterSet gpr_;
FloatRegisterSet fpu_;
friend class AnyRegisterIterator;
public:
RegisterSet() = default;
constexpr RegisterSet(const GeneralRegisterSet& gpr,
const FloatRegisterSet& fpu)
: gpr_(gpr), fpu_(fpu) {}
static inline RegisterSet All() {
return RegisterSet(GeneralRegisterSet::All(), FloatRegisterSet::All());
}
static inline RegisterSet Intersect(const RegisterSet& lhs,
const RegisterSet& rhs) {
return RegisterSet(GeneralRegisterSet::Intersect(lhs.gpr_, rhs.gpr_),
FloatRegisterSet::Intersect(lhs.fpu_, rhs.fpu_));
}
static inline RegisterSet Union(const RegisterSet& lhs,
const RegisterSet& rhs) {
return RegisterSet(GeneralRegisterSet::Union(lhs.gpr_, rhs.gpr_),
FloatRegisterSet::Union(lhs.fpu_, rhs.fpu_));
}
static inline RegisterSet Not(const RegisterSet& in) {
return RegisterSet(GeneralRegisterSet::Not(in.gpr_),
FloatRegisterSet::Not(in.fpu_));
}
static inline RegisterSet VolatileNot(const RegisterSet& in) {
return RegisterSet(GeneralRegisterSet::VolatileNot(in.gpr_),
FloatRegisterSet::VolatileNot(in.fpu_));
}
static inline RegisterSet Volatile() {
return RegisterSet(GeneralRegisterSet::Volatile(),
FloatRegisterSet::Volatile());
}
bool empty() const { return fpu_.empty() && gpr_.empty(); }
void clear() {
fpu_.clear();
gpr_.clear();
}
bool emptyGeneral() const { return gpr_.empty(); }
bool emptyFloat() const { return fpu_.empty(); }
static constexpr RegTypeName DefaultType = RegTypeName::GPR;
constexpr GeneralRegisterSet gprs() const { return gpr_; }
GeneralRegisterSet& gprs() { return gpr_; }
constexpr FloatRegisterSet fpus() const { return fpu_; }
FloatRegisterSet& fpus() { return fpu_; }
bool operator==(const RegisterSet& other) const {
return other.gpr_ == gpr_ && other.fpu_ == fpu_;
}
};
// [SMDOC] JIT Register-Set overview
//
// There are 2 use cases for register sets:
//
// 1. To serve as a pool of allocatable register. This is useful for working
// on the code produced by some stub where free registers are available, or
// when we can release some registers.
//
// 2. To serve as a list of typed registers. This is useful for working with
// live registers and to manipulate them with the proper instructions. This
// is used by the register allocator to fill the Safepoints.
//
// These 2 uses cases can be used on top of 3 different backend representation
// of register sets, which are either GeneralRegisterSet, FloatRegisterSet, or
// RegisterSet (for both). These classes are used to store the bit sets to
// represent each register.
//
// Each use case defines an Accessor class, such as AllocatableSetAccessor or
// LiveSetAccessor, which is parameterized with the type of the register
// set. These accessors are in charge of manipulating the register set in a
// consistent way.
//
// The RegSetCommonInterface class is used to wrap the accessors with convenient
// shortcuts which are based on the accessors.
//
// Then, to avoid to many levels of complexity while using these interfaces,
// shortcut templates are created to make it easy to distinguish between a
// register set used for allocating registers, or a register set used for making
// a collection of allocated (live) registers.
//
// This separation exists to prevent mixing LiveSet and AllocatableSet
// manipulations of the same register set, and ensure safety while avoiding
// false positive.
template <typename RegisterSet>
class AllocatableSet;
template <typename RegisterSet>
class LiveSet;
// [SMDOC] JIT Register-Set (Allocatable)
//
// Base accessors classes have the minimal set of raw methods to manipulate the
// register set given as parameter in a consistent manner. These methods are:
//
// - all<Type>: Returns a bit-set of all the register of a specific type
// which are present.
//
// - has: Returns if all the bits needed to take a register are present.
//
// - takeUnchecked: Subtracts the bits used to represent the register in the
// register set.
//
// - addUnchecked: Adds the bits used to represent the register in the
// register set.
// The AllocatableSet accessors are used to make a pool of unused
// registers. Taking or adding registers should consider the aliasing rules of
// the architecture. For example, on ARM, the following piece of code should
// work fine, knowing that the double register |d0| is composed of float
// registers |s0| and |s1|:
//
// AllocatableFloatRegisterSet regs;
// regs.add(s0);
// regs.add(s1);
// // d0 is now available.
// regs.take(d0);
//
// These accessors are useful for allocating registers within the functions used
// to generate stubs, trampolines, and inline caches (BaselineIC, IonCache).
template <typename Set>
class AllocatableSetAccessors {
public:
using RegSet = Set;
using RegType = typename RegSet::RegType;
using SetType = typename RegSet::SetType;
protected:
RegSet set_;
template <RegTypeName Name>
SetType all() const {
return set_.template allAllocatable<Name>();
}
public:
AllocatableSetAccessors() : set_() {}
explicit constexpr AllocatableSetAccessors(SetType set) : set_(set) {}
explicit constexpr AllocatableSetAccessors(RegSet set) : set_(set) {}
bool has(RegType reg) const { return set_.hasAllocatable(reg); }
template <RegTypeName Name>
bool hasAny(RegType reg) const {
return all<Name>() != 0;
}
void addUnchecked(RegType reg) { set_.addAllocatable(reg); }
void takeUnchecked(RegType reg) { set_.takeAllocatable(reg); }
};
// Specialization of the AllocatableSet accessors for the RegisterSet aggregate.
template <>
class AllocatableSetAccessors<RegisterSet> {
public:
using RegSet = RegisterSet;
using RegType = AnyRegister;
using SetType = char;
protected:
RegisterSet set_;
template <RegTypeName Name>
GeneralRegisterSet::SetType allGpr() const {
return set_.gprs().allAllocatable<Name>();
}
template <RegTypeName Name>
FloatRegisterSet::SetType allFpu() const {
return set_.fpus().allAllocatable<Name>();
}
public:
AllocatableSetAccessors() = default;
explicit constexpr AllocatableSetAccessors(SetType) = delete;
explicit constexpr AllocatableSetAccessors(RegisterSet set) : set_(set) {}
bool has(Register reg) const { return set_.gprs().hasAllocatable(reg); }
bool has(FloatRegister reg) const { return set_.fpus().hasAllocatable(reg); }
void addUnchecked(Register reg) { set_.gprs().addAllocatable(reg); }
void addUnchecked(FloatRegister reg) { set_.fpus().addAllocatable(reg); }
void takeUnchecked(Register reg) { set_.gprs().takeAllocatable(reg); }
void takeUnchecked(FloatRegister reg) { set_.fpus().takeAllocatable(reg); }
};
// [SMDOC] JIT Register-Set (Live)
//
// The LiveSet accessors are used to collect a list of allocated
// registers. Taking or adding a register should *not* consider the aliases, as
// we care about interpreting the registers with the correct type. For example,
// on x64, where one float registers can be interpreted as an Simd128, a Double,
// or a Float, adding xmm0 as an Simd128, does not make the register available
// as a Double.
//
// LiveFloatRegisterSet regs;
// regs.add(xmm0.asSimd128());
// regs.take(xmm0); // Assert!
//
// These accessors are useful for recording the result of a register allocator,
// such as what the Backtracking allocator do on the Safepoints.
template <typename Set>
class LiveSetAccessors {
public:
using RegSet = Set;
using RegType = typename RegSet::RegType;
using SetType = typename RegSet::SetType;
protected:
RegSet set_;
template <RegTypeName Name>
SetType all() const {
return set_.template allLive<Name>();
}
public:
LiveSetAccessors() : set_() {}
explicit constexpr LiveSetAccessors(SetType set) : set_(set) {}
explicit constexpr LiveSetAccessors(RegSet set) : set_(set) {}
bool has(RegType reg) const { return set_.hasRegisterIndex(reg); }
void addUnchecked(RegType reg) { set_.addRegisterIndex(reg); }
void takeUnchecked(RegType reg) { set_.takeRegisterIndex(reg); }
};
// Specialization of the LiveSet accessors for the RegisterSet aggregate.
template <>
class LiveSetAccessors<RegisterSet> {
public:
using RegSet = RegisterSet;
using RegType = AnyRegister;
using SetType = char;
protected:
RegisterSet set_;
template <RegTypeName Name>
GeneralRegisterSet::SetType allGpr() const {
return set_.gprs().allLive<Name>();
}
template <RegTypeName Name>
FloatRegisterSet::SetType allFpu() const {
return set_.fpus().allLive<Name>();
}
public:
LiveSetAccessors() = default;
explicit constexpr LiveSetAccessors(SetType) = delete;
explicit constexpr LiveSetAccessors(RegisterSet set) : set_(set) {}
bool has(Register reg) const { return set_.gprs().hasRegisterIndex(reg); }
bool has(FloatRegister reg) const {
return set_.fpus().hasRegisterIndex(reg);
}
void addUnchecked(Register reg) { set_.gprs().addRegisterIndex(reg); }
void addUnchecked(FloatRegister reg) { set_.fpus().addRegisterIndex(reg); }
void takeUnchecked(Register reg) { set_.gprs().takeRegisterIndex(reg); }
void takeUnchecked(FloatRegister reg) { set_.fpus().takeRegisterIndex(reg); }
};
#define DEFINE_ACCESSOR_CONSTRUCTORS_(REGSET) \
using typename Parent::RegSet; \
using typename Parent::RegType; \
using typename Parent::SetType; \
\
constexpr REGSET() : Parent() {} \
explicit constexpr REGSET(SetType set) : Parent(set) {} \
explicit constexpr REGSET(RegSet set) : Parent(set) {}
// This class adds checked accessors on top of the unchecked variants defined by
// AllocatableSet and LiveSet accessors. Also it defines interface which are
// specialized to the register set implementation, such as |getAny| and
// |takeAny| variants.
template <class Accessors, typename Set>
class SpecializedRegSet : public Accessors {
using Parent = Accessors;
public:
DEFINE_ACCESSOR_CONSTRUCTORS_(SpecializedRegSet)
SetType bits() const { return this->Parent::set_.bits(); }
using Parent::has;
using Parent::addUnchecked;
void add(RegType reg) {
MOZ_ASSERT(!this->has(reg));
addUnchecked(reg);
}
using Parent::takeUnchecked;
void take(RegType reg) {
MOZ_ASSERT(this->has(reg));
takeUnchecked(reg);
}
template <RegTypeName Name>
bool hasAny() const {
return Parent::template all<Name>() != 0;
}
template <RegTypeName Name = RegSet::DefaultType>
RegType getFirst() const {
SetType set = Parent::template all<Name>();
MOZ_ASSERT(set);
return RegSet::FirstRegister(set);
}
template <RegTypeName Name = RegSet::DefaultType>
RegType getLast() const {
SetType set = Parent::template all<Name>();
MOZ_ASSERT(set);
return RegSet::LastRegister(set);
}
template <RegTypeName Name = RegSet::DefaultType>
RegType getAny() const {
// The choice of first or last here is mostly arbitrary, as they are
// about the same speed on popular architectures. We choose first, as
// it has the advantage of using the "lower" registers more often. These
// registers are sometimes more efficient (e.g. optimized encodings for
// EAX on x86).
return getFirst<Name>();
}
template <RegTypeName Name = RegSet::DefaultType>
RegType getAnyExcluding(RegType preclude) {
if (!this->has(preclude)) {
return getAny<Name>();
}
take(preclude);
RegType result = getAny<Name>();
add(preclude);
return result;
}
template <RegTypeName Name = RegSet::DefaultType>
RegType takeAny() {
RegType reg = getAny<Name>();
take(reg);
return reg;
}
template <RegTypeName Name = RegSet::DefaultType>
RegType takeFirst() {
RegType reg = getFirst<Name>();
take(reg);
return reg;
}
template <RegTypeName Name = RegSet::DefaultType>
RegType takeLast() {
RegType reg = getLast<Name>();
take(reg);
return reg;
}
ValueOperand takeAnyValue() {
#if defined(JS_NUNBOX32)
return ValueOperand(takeAny<RegTypeName::GPR>(),
takeAny<RegTypeName::GPR>());
#elif defined(JS_PUNBOX64)
return ValueOperand(takeAny<RegTypeName::GPR>());
#else
# error "Bad architecture"
#endif
}
bool aliases(ValueOperand v) const {
#ifdef JS_NUNBOX32
return this->has(v.typeReg()) || this->has(v.payloadReg());
#else
return this->has(v.valueReg());
#endif
}
template <RegTypeName Name = RegSet::DefaultType>
RegType takeAnyExcluding(RegType preclude) {
RegType reg = getAnyExcluding<Name>(preclude);
take(reg);
return reg;
}
};
// Specialization of the accessors for the RegisterSet aggregate.
template <class Accessors>
class SpecializedRegSet<Accessors, RegisterSet> : public Accessors {
using Parent = Accessors;
public:
DEFINE_ACCESSOR_CONSTRUCTORS_(SpecializedRegSet)
GeneralRegisterSet gprs() const { return this->Parent::set_.gprs(); }
GeneralRegisterSet& gprs() { return this->Parent::set_.gprs(); }
FloatRegisterSet fpus() const { return this->Parent::set_.fpus(); }
FloatRegisterSet& fpus() { return this->Parent::set_.fpus(); }
bool emptyGeneral() const { return this->Parent::set_.emptyGeneral(); }
bool emptyFloat() const { return this->Parent::set_.emptyFloat(); }
using Parent::has;
bool has(AnyRegister reg) const {
return reg.isFloat() ? this->has(reg.fpu()) : this->has(reg.gpr());
}
template <RegTypeName Name>
bool hasAny() const {
if (Name == RegTypeName::GPR) {
return Parent::template allGpr<RegTypeName::GPR>() != 0;
}
return Parent::template allFpu<Name>() != 0;
}
using Parent::addUnchecked;
void addUnchecked(AnyRegister reg) {
if (reg.isFloat()) {
addUnchecked(reg.fpu());
} else {
addUnchecked(reg.gpr());
}
}
void add(Register reg) {
MOZ_ASSERT(!this->has(reg));
addUnchecked(reg);
}
void add(FloatRegister reg) {
MOZ_ASSERT(!this->has(reg));
addUnchecked(reg);
}
void add(AnyRegister reg) {
if (reg.isFloat()) {
add(reg.fpu());
} else {
add(reg.gpr());
}
}
using Parent::takeUnchecked;
void takeUnchecked(AnyRegister reg) {
if (reg.isFloat()) {
takeUnchecked(reg.fpu());
} else {
takeUnchecked(reg.gpr());
}
}
void take(Register reg) {
#ifdef DEBUG
bool hasReg = this->has(reg);
MOZ_ASSERT(hasReg);
#endif
takeUnchecked(reg);
}
void take(FloatRegister reg) {
MOZ_ASSERT(this->has(reg));
takeUnchecked(reg);
}
void take(AnyRegister reg) {
if (reg.isFloat()) {
take(reg.fpu());
} else {
take(reg.gpr());
}
}
Register getAnyGeneral() const {
GeneralRegisterSet::SetType set =
Parent::template allGpr<RegTypeName::GPR>();
MOZ_ASSERT(set);
return GeneralRegisterSet::FirstRegister(set);
}
template <RegTypeName Name = RegTypeName::Float64>
FloatRegister getAnyFloat() const {
FloatRegisterSet::SetType set = Parent::template allFpu<Name>();
MOZ_ASSERT(set);
return FloatRegisterSet::FirstRegister(set);
}
Register takeAnyGeneral() {
Register reg = getAnyGeneral();
take(reg);
return reg;
}
template <RegTypeName Name = RegTypeName::Float64>
FloatRegister takeAnyFloat() {
FloatRegister reg = getAnyFloat<Name>();
take(reg);
return reg;
}
ValueOperand takeAnyValue() {
#if defined(JS_NUNBOX32)
return ValueOperand(takeAnyGeneral(), takeAnyGeneral());
#elif defined(JS_PUNBOX64)
return ValueOperand(takeAnyGeneral());
#else
# error "Bad architecture"
#endif
}
};
// Interface which is common to all register set implementations. It overloads
// |add|, |take| and |takeUnchecked| methods for types such as |ValueOperand|,
// |TypedOrValueRegister|, and |Register64|.
template <class Accessors, typename Set>
class CommonRegSet : public SpecializedRegSet<Accessors, Set> {
using Parent = SpecializedRegSet<Accessors, Set>;
public:
DEFINE_ACCESSOR_CONSTRUCTORS_(CommonRegSet)
RegSet set() const { return this->Parent::set_; }
RegSet& set() { return this->Parent::set_; }
bool empty() const { return this->Parent::set_.empty(); }
void clear() { this->Parent::set_.clear(); }
using Parent::add;
void add(ValueOperand value) {
#if defined(JS_NUNBOX32)
add(value.payloadReg());
add(value.typeReg());
#elif defined(JS_PUNBOX64)
add(value.valueReg());
#else
# error "Bad architecture"
#endif
}
void add(Register64 reg) {
#if JS_BITS_PER_WORD == 32
add(reg.high);
add(reg.low);
#else
add(reg.reg);
#endif
}
using Parent::addUnchecked;
void addUnchecked(ValueOperand value) {
#if defined(JS_NUNBOX32)
addUnchecked(value.payloadReg());
addUnchecked(value.typeReg());
#elif defined(JS_PUNBOX64)
addUnchecked(value.valueReg());
#else
# error "Bad architecture"
#endif
}
void addUnchecked(Register64 reg) {
#if JS_BITS_PER_WORD == 32
take(reg.high);
take(reg.low);
#else
take(reg.reg);
#endif
}
void add(TypedOrValueRegister reg) {
if (reg.hasValue()) {
add(reg.valueReg());
} else if (reg.hasTyped()) {
add(reg.typedReg());
}
}
using Parent::take;
void take(ValueOperand value) {
#if defined(JS_NUNBOX32)
take(value.payloadReg());
take(value.typeReg());
#elif defined(JS_PUNBOX64)
take(value.valueReg());
#else
# error "Bad architecture"
#endif
}
void take(TypedOrValueRegister reg) {
if (reg.hasValue()) {
take(reg.valueReg());
} else if (reg.hasTyped()) {
take(reg.typedReg());
}
}
void take(Register64 reg) {
#if JS_BITS_PER_WORD == 32
take(reg.high);
take(reg.low);
#else
take(reg.reg);
#endif
}
using Parent::takeUnchecked;
void takeUnchecked(ValueOperand value) {
#if defined(JS_NUNBOX32)
takeUnchecked(value.payloadReg());
takeUnchecked(value.typeReg());
#elif defined(JS_PUNBOX64)
takeUnchecked(value.valueReg());
#else
# error "Bad architecture"
#endif
}
void takeUnchecked(TypedOrValueRegister reg) {
if (reg.hasValue()) {
takeUnchecked(reg.valueReg());
} else if (reg.hasTyped()) {
takeUnchecked(reg.typedReg());
}
}
void takeUnchecked(Register64 reg) {
#if JS_BITS_PER_WORD == 32
takeUnchecked(reg.high);
takeUnchecked(reg.low);
#else
takeUnchecked(reg.reg);
#endif
}
};
// These classes do not provide any additional members, they only use their
// constructors to forward to the common interface for all register sets. The
// only benefit of these classes is to provide user friendly names.
template <typename Set>
class LiveSet : public CommonRegSet<LiveSetAccessors<Set>, Set> {
using Parent = CommonRegSet<LiveSetAccessors<Set>, Set>;
public:
DEFINE_ACCESSOR_CONSTRUCTORS_(LiveSet)
};
template <typename Set>
class AllocatableSet : public CommonRegSet<AllocatableSetAccessors<Set>, Set> {
using Parent = CommonRegSet<AllocatableSetAccessors<Set>, Set>;
public:
DEFINE_ACCESSOR_CONSTRUCTORS_(AllocatableSet)
LiveSet<Set> asLiveSet() const { return LiveSet<Set>(this->set()); }
};
#define DEFINE_ACCESSOR_CONSTRUCTORS_FOR_REGISTERSET_(REGSET) \
using typename Parent::RegSet; \
using typename Parent::RegType; \
using typename Parent::SetType; \
\
constexpr REGSET() : Parent() {} \
explicit constexpr REGSET(SetType) = delete; \
explicit constexpr REGSET(RegSet set) : Parent(set) {} \
constexpr REGSET(GeneralRegisterSet gpr, FloatRegisterSet fpu) \
: Parent(RegisterSet(gpr, fpu)) {} \
REGSET(REGSET<GeneralRegisterSet> gpr, REGSET<FloatRegisterSet> fpu) \
: Parent(RegisterSet(gpr.set(), fpu.set())) {}
template <>
class LiveSet<RegisterSet>
: public CommonRegSet<LiveSetAccessors<RegisterSet>, RegisterSet> {
// Note: We have to provide a qualified name for LiveSetAccessors, as it is
// interpreted as being the specialized class name inherited from the parent
// class specialization.
using Parent = CommonRegSet<jit::LiveSetAccessors<RegisterSet>, RegisterSet>;
public:
DEFINE_ACCESSOR_CONSTRUCTORS_FOR_REGISTERSET_(LiveSet)
};
template <>
class AllocatableSet<RegisterSet>
: public CommonRegSet<AllocatableSetAccessors<RegisterSet>, RegisterSet> {
// Note: We have to provide a qualified name for AllocatableSetAccessors, as
// it is interpreted as being the specialized class name inherited from the
// parent class specialization.
using Parent =
CommonRegSet<jit::AllocatableSetAccessors<RegisterSet>, RegisterSet>;
public:
DEFINE_ACCESSOR_CONSTRUCTORS_FOR_REGISTERSET_(AllocatableSet)
LiveSet<RegisterSet> asLiveSet() const {
return LiveSet<RegisterSet>(this->set());
}
};
#undef DEFINE_ACCESSOR_CONSTRUCTORS_FOR_REGISTERSET_
#undef DEFINE_ACCESSOR_CONSTRUCTORS_
using AllocatableGeneralRegisterSet = AllocatableSet<GeneralRegisterSet>;
using AllocatableFloatRegisterSet = AllocatableSet<FloatRegisterSet>;
using AllocatableRegisterSet = AllocatableSet<RegisterSet>;
using LiveGeneralRegisterSet = LiveSet<GeneralRegisterSet>;
using LiveFloatRegisterSet = LiveSet<FloatRegisterSet>;
using LiveRegisterSet = LiveSet<RegisterSet>;
// iterates in whatever order happens to be convenient.
// Use TypedRegisterBackwardIterator or TypedRegisterForwardIterator if a
// specific order is required.
template <typename T>
class TypedRegisterIterator {
LiveSet<TypedRegisterSet<T>> regset_;
public:
explicit TypedRegisterIterator(TypedRegisterSet<T> regset)
: regset_(regset) {}
explicit TypedRegisterIterator(LiveSet<TypedRegisterSet<T>> regset)
: regset_(regset) {}
TypedRegisterIterator(const TypedRegisterIterator& other)
: regset_(other.regset_) {}
bool more() const { return !regset_.empty(); }
TypedRegisterIterator<T>& operator++() {
regset_.template takeAny<RegTypeName::Any>();
return *this;
}
T operator*() const { return regset_.template getAny<RegTypeName::Any>(); }
};
// iterates backwards, that is, rn to r0
template <typename T>
class TypedRegisterBackwardIterator {
LiveSet<TypedRegisterSet<T>> regset_;
public:
explicit TypedRegisterBackwardIterator(TypedRegisterSet<T> regset)
: regset_(regset) {}
explicit TypedRegisterBackwardIterator(LiveSet<TypedRegisterSet<T>> regset)
: regset_(regset) {}
TypedRegisterBackwardIterator(const TypedRegisterBackwardIterator& other)
: regset_(other.regset_) {}
bool more() const { return !regset_.empty(); }
TypedRegisterBackwardIterator<T>& operator++() {
regset_.template takeLast<RegTypeName::Any>();
return *this;
}
T operator*() const { return regset_.template getLast<RegTypeName::Any>(); }
};
// iterates forwards, that is r0 to rn
template <typename T>
class TypedRegisterForwardIterator {
LiveSet<TypedRegisterSet<T>> regset_;
public:
explicit TypedRegisterForwardIterator(TypedRegisterSet<T> regset)
: regset_(regset) {}
explicit TypedRegisterForwardIterator(LiveSet<TypedRegisterSet<T>> regset)
: regset_(regset) {}
TypedRegisterForwardIterator(const TypedRegisterForwardIterator& other)
: regset_(other.regset_) {}
bool more() const { return !regset_.empty(); }
TypedRegisterForwardIterator<T>& operator++() {
regset_.template takeFirst<RegTypeName::Any>();
return *this;
}
T operator*() const { return regset_.template getFirst<RegTypeName::Any>(); }
};
using GeneralRegisterIterator = TypedRegisterIterator<Register>;
using FloatRegisterIterator = TypedRegisterIterator<FloatRegister>;
using GeneralRegisterBackwardIterator = TypedRegisterBackwardIterator<Register>;
using FloatRegisterBackwardIterator =
TypedRegisterBackwardIterator<FloatRegister>;
using GeneralRegisterForwardIterator = TypedRegisterForwardIterator<Register>;
using FloatRegisterForwardIterator =
TypedRegisterForwardIterator<FloatRegister>;
class AnyRegisterIterator {
GeneralRegisterIterator geniter_;
FloatRegisterIterator floatiter_;
public:
AnyRegisterIterator()
: geniter_(GeneralRegisterSet::All()),
floatiter_(FloatRegisterSet::All()) {}
AnyRegisterIterator(GeneralRegisterSet genset, FloatRegisterSet floatset)
: geniter_(genset), floatiter_(floatset) {}
explicit AnyRegisterIterator(const RegisterSet& set)
: geniter_(set.gpr_), floatiter_(set.fpu_) {}
explicit AnyRegisterIterator(const LiveSet<RegisterSet>& set)
: geniter_(set.gprs()), floatiter_(set.fpus()) {}
AnyRegisterIterator(const AnyRegisterIterator& other) = default;
bool more() const { return geniter_.more() || floatiter_.more(); }
AnyRegisterIterator& operator++() {
if (geniter_.more()) {
++geniter_;
} else {
++floatiter_;
}
return *this;
}
AnyRegister operator*() const {
if (geniter_.more()) {
return AnyRegister(*geniter_);
}
return AnyRegister(*floatiter_);
}
};
class ABIArg {
public:
enum Kind {
GPR,
#ifdef JS_CODEGEN_REGISTER_PAIR
GPR_PAIR,
#endif
FPU,
Stack,
Uninitialized = -1
};
private:
Kind kind_;
union {
Register::Code gpr_;
FloatRegister::Code fpu_;
uint32_t offset_;
} u;
public:
ABIArg() : kind_(Uninitialized) { u.offset_ = -1; }
explicit ABIArg(Register gpr) : kind_(GPR) { u.gpr_ = gpr.code(); }
explicit ABIArg(Register gprLow, Register gprHigh) {
#if defined(JS_CODEGEN_REGISTER_PAIR)
kind_ = GPR_PAIR;
#else
MOZ_CRASH("Unsupported type of ABI argument.");
#endif
u.gpr_ = gprLow.code();
MOZ_ASSERT(u.gpr_ % 2 == 0);
MOZ_ASSERT(u.gpr_ + 1 == gprHigh.code());
}
explicit ABIArg(FloatRegister fpu) : kind_(FPU) { u.fpu_ = fpu.code(); }
explicit ABIArg(uint32_t offset) : kind_(Stack) { u.offset_ = offset; }
Kind kind() const {
MOZ_ASSERT(kind_ != Uninitialized);
return kind_;
}
#ifdef JS_CODEGEN_REGISTER_PAIR
bool isGeneralRegPair() const { return kind() == GPR_PAIR; }
#else
bool isGeneralRegPair() const { return false; }
#endif
Register gpr() const {
MOZ_ASSERT(kind() == GPR);
return Register::FromCode(u.gpr_);
}
Register64 gpr64() const {
#ifdef JS_PUNBOX64
return Register64(gpr());
#else
return Register64(oddGpr(), evenGpr());
#endif
}
Register evenGpr() const {