Source code

Revision control

Copy as Markdown

Other Tools

// Test that wasm atomic operations implement correct mutual exclusion.
//
// We have several agents that attempt to hammer on a shared location with rmw
// operations in such a way that failed atomicity will lead to an incorrect
// result. Each agent attempts to clear or set specific bits in a shared datum.
// 1 for a little bit, 2 for a lot, 3 to quit before running tests
const DEBUG = 0;
// The longer we run, the better, really, but we don't want to time out.
const ITERATIONS = 100000;
// If you change NUMWORKERS you must also change the tables for INIT, VAL, and
// RESULT for all the operations, below, by adding or removing bits.
const NUMWORKERS = 2;
const NUMAGENTS = NUMWORKERS + 1;
// Need at least one thread per agent.
if (!wasmThreadsEnabled() || helperThreadCount() < NUMWORKERS) {
if (DEBUG > 0)
print("Threads not supported");
quit(0);
}
// Unless there are enough actual cores the spinning threads will not interact
// in the desired way (we'll be waiting on preemption to advance), and this
// makes the test pointless and also will usually make it time out. So bail out
// if we can't have one core per agent.
if (getCoreCount() < NUMAGENTS) {
if (DEBUG > 0)
print("Fake or feeble hardware");
quit(0);
}
// Most of the simulators have poor support for mutual exclusion and are anyway
// too slow; avoid intermittent failures and timeouts.
if (getBuildConfiguration("arm-simulator") || getBuildConfiguration("arm64-simulator") ||
getBuildConfiguration("mips32-simulator") || getBuildConfiguration("mips64-simulator"))
{
if (DEBUG > 0)
print("Atomicity test disabled on simulator");
quit(0);
}
////////////////////////////////////////////////////////////////////////
//
// Coordination code for bootstrapping workers - use spawn() to create a worker,
// send() to send an item to a worker. send() will send to anyone, so only one
// worker should be receiving at a time. spawn() will block until the worker is
// running; send() will block until the message has been received.
var COORD_BUSY = 0;
var COORD_NUMLOC = 1;
var coord = new Int32Array(new SharedArrayBuffer(COORD_NUMLOC*4));
function spawn(text) {
text = `
var _coord = new Int32Array(getSharedObject());
Atomics.store(_coord, ${COORD_BUSY}, 0);
function receive() {
while (!Atomics.load(_coord, ${COORD_BUSY}))
;
let x = getSharedObject();
Atomics.store(_coord, ${COORD_BUSY}, 0);
return x;
}
` + text;
setSharedObject(coord.buffer);
Atomics.store(coord, COORD_BUSY, 1);
evalInWorker(text);
while (Atomics.load(coord, COORD_BUSY))
;
}
function send(x) {
while(Atomics.load(coord, COORD_BUSY))
;
setSharedObject(x);
Atomics.store(coord, COORD_BUSY, 1);
while(Atomics.load(coord, COORD_BUSY))
;
}
/////////////////////////////////////////////////////////////////////////////////
//
// The "agents" comprise one master and one or more additional workers. We make
// a separate module for each agent so that test values can be inlined as
// constants.
//
// The master initially sets a shared location LOC to a value START.
//
// Each agent then operates atomically on LOC with an operation OP and a value
// VAL. The operation OP is the same for all agents but each agent `i` has a
// different VAL_i.
//
// To make this more interesting, the value START is distributed as many times
// through the value at LOC as there is space for, and we perform several
// operations back-to-back, with the VAL_i appropriately shifted.
//
// Each agent then spin-waits for LOC to contain a particular RESULT, which is
// always (START OP VAL_0 OP VAL_1 ... VAL_k), again repeated throughout the
// RESULT as appropriate.
//
// The process then starts over, and we repeat the process many times. If we
// fail to have atomicity at any point the program will hang (LOC will never
// attain the desired value) and the test should therefore time out.
//
// (Barriers are needed to make this all work out.)
//
// The general principle for the values is that each VAL should add (or clear) a
// bit of the stored value.
//
// OP START VAL0 VAL1 VAL2 RESULT
//
// ADD[*] 0 1 2 4 7
// SUB 7 1 2 4 0
// AND 7 3 6 5 0
// OR 0 1 2 4 7
// XOR 0 1 2 4 7 // or start with 7 and end with 0
// CMPXCHG 0 1 2 4 7 // use nonatomic "or" to add the bit
//
// [*] Running the tests actually assumes that ADD works reasonably well.
//
// TODO - more variants we could test:
//
// - tests that do not drop the values of the atomic ops but accumulate them:
// uses different code generation on x86/x64
//
// - Xchg needs a different method, since here the atomic thing is that we read
// the "previous value" and set the next value atomically. How can we observe
// that that fails? If we run three agents, which all set the value to X,
// X+1, ..., X+n, with the initial value being (say) X-1, each can record the
// value it observed in a table, and we should be able to predict the counts
// in that table once postprocessed. eg, the counts should all be the same.
// If atomicity fails then a value is read twice when it shouldn't be, and
// some other value is not read at all, and the counts will be off.
//
// - the different rmw operations can usually be combined so that we can test
// the atomicity of operations that may be implemented differently.
//
// - the same tests, with test values as variables instead of constants.
function makeModule(id) {
let isMaster = id == 0;
let VALSHIFT = NUMAGENTS; // 1 bit per agent
function makeLoop(bits, name, op, loc, initial, val, expected) {
// Exclude high bit to avoid messing with the sign.
let NUMVALS32 = Math.floor(31/VALSHIFT);
let NUMVALS = bits == 64 ? 2 * NUMVALS32 : Math.floor(Math.min(bits,31)/VALSHIFT);
let BARRIER = "(i32.const 0)";
let barrier = `
;; Barrier
(local.set $barrierValue (i32.add (local.get $barrierValue) (i32.const ${NUMAGENTS})))
(drop (i32.atomic.rmw.add ${BARRIER} (i32.const 1)))
(loop $c1
(if (i32.lt_s (i32.atomic.load ${BARRIER}) (local.get $barrierValue))
(then (br $c1))))
;; End barrier
`;
// Distribute a value `v` across a word NUMVALs times
function distribute(v) {
if (bits <= 32)
return '0x' + dist32(v);
return '0x' + dist32(v) + dist32(v);
}
function dist32(v) {
let n = 0;
for (let i=0; i < Math.min(NUMVALS, NUMVALS32); i++)
n = n | (v << (i*VALSHIFT));
assertEq(n >= 0, true);
return (n + 0x100000000).toString(16).substring(1);
}
// Position a value `v` at position `pos` in a word
function format(val, pos) {
if (bits <= 32)
return '0x' + format32(val, pos);
if (pos < NUMVALS32)
return '0x' + '00000000' + format32(val, pos);
return '0x' + format32(val, pos - NUMVALS32) + '00000000';
}
function format32(val, pos) {
return ((val << (pos * VALSHIFT)) + 0x100000000).toString(16).substring(1);
}
let width = bits < 32 ? '' + bits : '';
let view = bits < 32 ? '_u' : '';
let prefix = bits == 64 ? 'i64' : 'i32';
return `
(func ${name} (param $barrierValue i32) (result i32)
(local $n i32)
(local $tmp ${prefix})
(local.set $n (i32.const ${ITERATIONS}))
(loop $outer
(if (local.get $n)
(then (block
${isMaster ? `;; Init
(${prefix}.atomic.store${width} ${loc} (${prefix}.const ${distribute(initial)}))` : ``}
${barrier}
${(() => {
let s = `;; Do\n`;
for (let i=0; i < NUMVALS; i++) {
let bitval = `(${prefix}.const ${format(val, i)})`
// The load must be atomic though it would be better if it were relaxed,
// we would avoid fences in that case.
if (op.match(/cmpxchg/)) {
s += `(loop $doit
(local.set $tmp (${prefix}.atomic.load${width}${view} ${loc}))
(br_if $doit (i32.eqz
(${prefix}.eq
(local.get $tmp)
(${op} ${loc} (local.get $tmp) (${prefix}.or (local.get $tmp) ${bitval}))))))
`;
} else {
s += `(drop (${op} ${loc} ${bitval}))
`;
}
}
return s
})()}
(loop $wait_done
(br_if $wait_done (${prefix}.ne (${prefix}.atomic.load${width}${view} ${loc}) (${prefix}.const ${distribute(expected)}))))
${barrier}
(local.set $n (i32.sub (local.get $n) (i32.const 1)))
(br $outer)))))
(local.get $barrierValue))`;
}
const ADDLOC = "(i32.const 256)";
const ADDINIT = 0;
const ADDVAL = [1, 2, 4];
const ADDRESULT = 7;
const SUBLOC = "(i32.const 512)";
const SUBINIT = 7;
const SUBVAL = [1, 2, 4];
const SUBRESULT = 0;
const ANDLOC = "(i32.const 768)";
const ANDINIT = 7;
const ANDVAL = [3, 6, 5];
const ANDRESULT = 0;
const ORLOC = "(i32.const 1024)";
const ORINIT = 0;
const ORVAL = [1, 2, 4];
const ORRESULT = 7;
const XORLOC = "(i32.const 1280)";
const XORINIT = 0;
const XORVAL = [1, 2, 4];
const XORRESULT = 7;
const CMPXCHGLOC = "(i32.const 1536)";
const CMPXCHGINIT = 0;
const CMPXCHGVAL = [1, 2, 4];
const CMPXCHGRESULT = 7;
return `
(module
(import "" "memory" (memory 1 1 shared))
(import "" "print" (func $print (param i32)))
${makeLoop(8, "$test_add8", "i32.atomic.rmw8.add_u", ADDLOC, ADDINIT, ADDVAL[id], ADDRESULT)}
${makeLoop(8, "$test_sub8", "i32.atomic.rmw8.sub_u", SUBLOC, SUBINIT, SUBVAL[id], SUBRESULT)}
${makeLoop(8, "$test_and8", "i32.atomic.rmw8.and_u", ANDLOC, ANDINIT, ANDVAL[id], ANDRESULT)}
${makeLoop(8, "$test_or8", "i32.atomic.rmw8.or_u", ORLOC, ORINIT, ORVAL[id], ORRESULT)}
${makeLoop(8, "$test_xor8", "i32.atomic.rmw8.xor_u", XORLOC, XORINIT, XORVAL[id], XORRESULT)}
${makeLoop(8, "$test_cmpxchg8", "i32.atomic.rmw8.cmpxchg_u", CMPXCHGLOC, CMPXCHGINIT, CMPXCHGVAL[id], CMPXCHGRESULT)}
${makeLoop(16, "$test_add16", "i32.atomic.rmw16.add_u", ADDLOC, ADDINIT, ADDVAL[id], ADDRESULT)}
${makeLoop(16, "$test_sub16", "i32.atomic.rmw16.sub_u", SUBLOC, SUBINIT, SUBVAL[id], SUBRESULT)}
${makeLoop(16, "$test_and16", "i32.atomic.rmw16.and_u", ANDLOC, ANDINIT, ANDVAL[id], ANDRESULT)}
${makeLoop(16, "$test_or16", "i32.atomic.rmw16.or_u", ORLOC, ORINIT, ORVAL[id], ORRESULT)}
${makeLoop(16, "$test_xor16", "i32.atomic.rmw16.xor_u", XORLOC, XORINIT, XORVAL[id], XORRESULT)}
${makeLoop(16, "$test_cmpxchg16", "i32.atomic.rmw16.cmpxchg_u", CMPXCHGLOC, CMPXCHGINIT, CMPXCHGVAL[id], CMPXCHGRESULT)}
${makeLoop(32, "$test_add", "i32.atomic.rmw.add", ADDLOC, ADDINIT, ADDVAL[id], ADDRESULT)}
${makeLoop(32, "$test_sub", "i32.atomic.rmw.sub", SUBLOC, SUBINIT, SUBVAL[id], SUBRESULT)}
${makeLoop(32, "$test_and", "i32.atomic.rmw.and", ANDLOC, ANDINIT, ANDVAL[id], ANDRESULT)}
${makeLoop(32, "$test_or", "i32.atomic.rmw.or", ORLOC, ORINIT, ORVAL[id], ORRESULT)}
${makeLoop(32, "$test_xor", "i32.atomic.rmw.xor", XORLOC, XORINIT, XORVAL[id], XORRESULT)}
${makeLoop(32, "$test_cmpxchg", "i32.atomic.rmw.cmpxchg", CMPXCHGLOC, CMPXCHGINIT, CMPXCHGVAL[id], CMPXCHGRESULT)}
${makeLoop(64, "$test_add64", "i64.atomic.rmw.add", ADDLOC, ADDINIT, ADDVAL[id], ADDRESULT)}
${makeLoop(64, "$test_sub64", "i64.atomic.rmw.sub", SUBLOC, SUBINIT, SUBVAL[id], SUBRESULT)}
${makeLoop(64, "$test_and64", "i64.atomic.rmw.and", ANDLOC, ANDINIT, ANDVAL[id], ANDRESULT)}
${makeLoop(64, "$test_or64", "i64.atomic.rmw.or", ORLOC, ORINIT, ORVAL[id], ORRESULT)}
${makeLoop(64, "$test_xor64", "i64.atomic.rmw.xor", XORLOC, XORINIT, XORVAL[id], XORRESULT)}
${makeLoop(64, "$test_cmpxchg64", "i64.atomic.rmw.cmpxchg", CMPXCHGLOC, CMPXCHGINIT, CMPXCHGVAL[id], CMPXCHGRESULT)}
(func (export "test")
(local $barrierValue i32)
(call $print (i32.const ${10 + id}))
(local.set $barrierValue (call $test_add8 (local.get $barrierValue)))
(local.set $barrierValue (call $test_sub8 (local.get $barrierValue)))
(local.set $barrierValue (call $test_and8 (local.get $barrierValue)))
(local.set $barrierValue (call $test_or8 (local.get $barrierValue)))
(local.set $barrierValue (call $test_xor8 (local.get $barrierValue)))
(local.set $barrierValue (call $test_cmpxchg8 (local.get $barrierValue)))
(call $print (i32.const ${20 + id}))
(local.set $barrierValue (call $test_add16 (local.get $barrierValue)))
(local.set $barrierValue (call $test_sub16 (local.get $barrierValue)))
(local.set $barrierValue (call $test_and16 (local.get $barrierValue)))
(local.set $barrierValue (call $test_or16 (local.get $barrierValue)))
(local.set $barrierValue (call $test_xor16 (local.get $barrierValue)))
(local.set $barrierValue (call $test_cmpxchg16 (local.get $barrierValue)))
(call $print (i32.const ${30 + id}))
(local.set $barrierValue (call $test_add (local.get $barrierValue)))
(local.set $barrierValue (call $test_sub (local.get $barrierValue)))
(local.set $barrierValue (call $test_and (local.get $barrierValue)))
(local.set $barrierValue (call $test_or (local.get $barrierValue)))
(local.set $barrierValue (call $test_xor (local.get $barrierValue)))
(local.set $barrierValue (call $test_cmpxchg (local.get $barrierValue)))
(call $print (i32.const ${40 + id}))
(local.set $barrierValue (call $test_add64 (local.get $barrierValue)))
(local.set $barrierValue (call $test_sub64 (local.get $barrierValue)))
(local.set $barrierValue (call $test_and64 (local.get $barrierValue)))
(local.set $barrierValue (call $test_or64 (local.get $barrierValue)))
(local.set $barrierValue (call $test_xor64 (local.get $barrierValue)))
(local.set $barrierValue (call $test_cmpxchg64 (local.get $barrierValue)))
))
`;
}
function makeModule2(id) {
let text = makeModule(id);
if (DEBUG > 1)
print(text);
return new WebAssembly.Module(wasmTextToBinary(text));
}
var mods = [];
mods.push(makeModule2(0));
for ( let i=0; i < NUMWORKERS; i++ )
mods.push(makeModule2(i+1));
if (DEBUG > 2)
quit(0);
var mem = new WebAssembly.Memory({initial: 1, maximum: 1, shared: true});
////////////////////////////////////////////////////////////////////////
//
// Worker code
function startWorkers() {
for ( let i=0; i < NUMWORKERS; i++ ) {
spawn(`
var mem = receive();
var mod = receive();
function pr(n) { if (${DEBUG}) print(n); }
var ins = new WebAssembly.Instance(mod, {"":{memory: mem, print:pr}});
if (${DEBUG} > 0)
print("Running ${i}");
ins.exports.test();
`);
send(mem);
send(mods[i+1]);
}
}
////////////////////////////////////////////////////////////////////////
//
// Main thread code
startWorkers();
function pr(n) { if (DEBUG) print(n); }
var ins = new WebAssembly.Instance(mods[0], {"":{memory: mem, print:pr}});
if (DEBUG > 0)
print("Running master");
ins.exports.test();