Source code

Revision control

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use api::TileSize;
use api::units::*;
use euclid::{point2, size2};
use prim_store::EdgeAaSegmentMask;

use std::i32;
use std::ops::Range;

/// If repetitions are far enough apart that only one is within
/// the primitive rect, then we can simplify the parameters and
/// treat the primitive as not repeated.
/// This can let us avoid unnecessary work later to handle some
/// of the parameters.
pub fn simplify_repeated_primitive(
    stretch_size: &LayoutSize,
    tile_spacing: &mut LayoutSize,
    prim_rect: &mut LayoutRect,
) {
    let stride = *stretch_size + *tile_spacing;

    if stride.width >= prim_rect.size.width {
        tile_spacing.width = 0.0;
        prim_rect.size.width = f32::min(prim_rect.size.width, stretch_size.width);
    }
    if stride.height >= prim_rect.size.height {
        tile_spacing.height = 0.0;
        prim_rect.size.height = f32::min(prim_rect.size.height, stretch_size.height);
    }
}

pub struct Repetition {
    pub origin: LayoutPoint,
    pub edge_flags: EdgeAaSegmentMask,
}

pub struct RepetitionIterator {
    current_x: i32,
    x_count: i32,
    current_y: i32,
    y_count: i32,
    row_flags: EdgeAaSegmentMask,
    current_origin: LayoutPoint,
    initial_origin: LayoutPoint,
    stride: LayoutSize,
}

impl Iterator for RepetitionIterator {
    type Item = Repetition;

    fn next(&mut self) -> Option<Self::Item> {
        if self.current_x == self.x_count {
            self.current_y += 1;
            if self.current_y >= self.y_count {
                return None;
            }
            self.current_x = 0;

            self.row_flags = EdgeAaSegmentMask::empty();
            if self.current_y == self.y_count - 1 {
                self.row_flags |= EdgeAaSegmentMask::BOTTOM;
            }

            self.current_origin.x = self.initial_origin.x;
            self.current_origin.y += self.stride.height;
        }

        let mut edge_flags = self.row_flags;
        if self.current_x == 0 {
            edge_flags |= EdgeAaSegmentMask::LEFT;
        }

        if self.current_x == self.x_count - 1 {
            edge_flags |= EdgeAaSegmentMask::RIGHT;
        }

        let repetition = Repetition {
            origin: self.current_origin,
            edge_flags: edge_flags,
        };

        self.current_origin.x += self.stride.width;
        self.current_x += 1;

        Some(repetition)
    }
}

pub fn repetitions(
    prim_rect: &LayoutRect,
    visible_rect: &LayoutRect,
    stride: LayoutSize,
) -> RepetitionIterator {
    assert!(stride.width > 0.0);
    assert!(stride.height > 0.0);

    let visible_rect = match prim_rect.intersection(&visible_rect) {
        Some(rect) => rect,
        None => {
            return RepetitionIterator {
                current_origin: LayoutPoint::zero(),
                initial_origin: LayoutPoint::zero(),
                current_x: 0,
                current_y: 0,
                x_count: 0,
                y_count: 0,
                stride,
                row_flags: EdgeAaSegmentMask::empty(),
            }
        }
    };

    let nx = if visible_rect.origin.x > prim_rect.origin.x {
        f32::floor((visible_rect.origin.x - prim_rect.origin.x) / stride.width)
    } else {
        0.0
    };

    let ny = if visible_rect.origin.y > prim_rect.origin.y {
        f32::floor((visible_rect.origin.y - prim_rect.origin.y) / stride.height)
    } else {
        0.0
    };

    let x0 = prim_rect.origin.x + nx * stride.width;
    let y0 = prim_rect.origin.y + ny * stride.height;

    let x_most = visible_rect.max_x();
    let y_most = visible_rect.max_y();

    let x_count = f32::ceil((x_most - x0) / stride.width) as i32;
    let y_count = f32::ceil((y_most - y0) / stride.height) as i32;

    let mut row_flags = EdgeAaSegmentMask::TOP;
    if y_count == 1 {
        row_flags |= EdgeAaSegmentMask::BOTTOM;
    }

    RepetitionIterator {
        current_origin: LayoutPoint::new(x0, y0),
        initial_origin: LayoutPoint::new(x0, y0),
        current_x: 0,
        current_y: 0,
        x_count,
        y_count,
        row_flags,
        stride,
    }
}

#[derive(Debug)]
pub struct Tile {
    pub rect: LayoutRect,
    pub offset: TileOffset,
    pub edge_flags: EdgeAaSegmentMask,
}

#[derive(Debug)]
pub struct TileIteratorExtent {
    /// Range of tiles to iterate over in number of tiles.
    tile_range: Range<i32>,
    /// Size of the first tile in layout space.
    first_tile_layout_size: f32,
    /// Size of the last tile in layout space.
    last_tile_layout_size: f32,
}

#[derive(Debug)]
pub struct TileIterator {
    current_tile: TileOffset,
    x: TileIteratorExtent,
    y: TileIteratorExtent,
    regular_tile_size: LayoutSize,
    local_origin: LayoutPoint,
}

impl Iterator for TileIterator {
    type Item = Tile;

    fn next(&mut self) -> Option<Self::Item> {
        if self.current_tile.x >= self.x.tile_range.end {
            self.current_tile.y += 1;
            if self.current_tile.y >= self.y.tile_range.end {
                return None;
            }
            self.current_tile.x = self.x.tile_range.start;
        }

        let tile_offset = self.current_tile;

        let mut segment_rect = LayoutRect {
            origin: LayoutPoint::new(
                self.local_origin.x + tile_offset.x as f32 * self.regular_tile_size.width,
                self.local_origin.y + tile_offset.y as f32 * self.regular_tile_size.height,
            ),
            size: self.regular_tile_size,
        };

        let mut edge_flags = EdgeAaSegmentMask::empty();

        if tile_offset.x == self.x.tile_range.start {
            edge_flags |= EdgeAaSegmentMask::LEFT;
            segment_rect.size.width = self.x.first_tile_layout_size;
            // If the first tile is a partial tile, its origin isn't aligned with the tile grid,
            // we account for that here.
            segment_rect.origin.x += self.regular_tile_size.width - self.x.first_tile_layout_size;
        }
        if tile_offset.x == self.x.tile_range.end - 1 {
            edge_flags |= EdgeAaSegmentMask::RIGHT;
            segment_rect.size.width = self.x.last_tile_layout_size;
        }

        if tile_offset.y == self.y.tile_range.start {
            segment_rect.size.height = self.y.first_tile_layout_size;
            // If the first tile is a partial tile, its origin isn't aligned with the tile grid,
            // we account for that here.
            segment_rect.origin.y += self.regular_tile_size.height - self.y.first_tile_layout_size;
            edge_flags |= EdgeAaSegmentMask::TOP;
        }
        if tile_offset.y == self.y.tile_range.end - 1 {
            segment_rect.size.height = self.y.last_tile_layout_size;
            edge_flags |= EdgeAaSegmentMask::BOTTOM;
        }

        assert!(tile_offset.y < self.y.tile_range.end);
        let tile = Tile {
            rect: segment_rect,
            offset: tile_offset,
            edge_flags,
        };

        self.current_tile.x += 1;

        Some(tile)
    }
}

pub fn tiles(
    prim_rect: &LayoutRect,
    visible_rect: &LayoutRect,
    image_rect: &DeviceIntRect,
    device_tile_size: i32,
) -> TileIterator {
    // The image resource is tiled. We have to generate an image primitive
    // for each tile.
    // We need to do this because the image is broken up into smaller tiles in the texture
    // cache and the image shader is not able to work with this type of sparse representation.

    // The tiling logic works as follows:
    //
    //  +-#################-+  -+
    //  | #//|    |    |//# |   | image size
    //  | #//|    |    |//# |   |
    //  +-#--+----+----+--#-+   |  -+
    //  | #//|    |    |//# |   |   | regular tile size
    //  | #//|    |    |//# |   |   |
    //  +-#--+----+----+--#-+   |  -+-+
    //  | #//|////|////|//# |   |     | "leftover" height
    //  | ################# |  -+  ---+
    //  +----+----+----+----+
    //
    // In the ascii diagram above, a large image is split into tiles of almost regular size.
    // The tiles on the edges (hatched in the diagram) can be smaller than the regular tiles
    // and are handled separately in the code (we'll call them boundary tiles).
    //
    // Each generated segment corresponds to a tile in the texture cache, with the
    // assumption that the boundary tiles are sized to fit their own irregular size in the
    // texture cache.
    //
    // Because we can have very large virtual images we iterate over the visible portion of
    // the image in layer space intead of iterating over all device tiles.

    let visible_rect = match prim_rect.intersection(&visible_rect) {
        Some(rect) => rect,
        None => {
            return TileIterator {
                current_tile: TileOffset::zero(),
                x: TileIteratorExtent {
                    tile_range: 0..0,
                    first_tile_layout_size: 0.0,
                    last_tile_layout_size: 0.0,
                },
                y: TileIteratorExtent {
                    tile_range: 0..0,
                    first_tile_layout_size: 0.0,
                    last_tile_layout_size: 0.0,
                },
                regular_tile_size: LayoutSize::zero(),
                local_origin: LayoutPoint::zero(),
            }
        }
    };

    let device_image_range_x = image_rect.x_range();
    let device_image_range_y = image_rect.y_range();

    // Some of the tile iteration logic expects the regular tile size to be
    // inferior or equal to the image size, take care of that here.
    let x_device_tile_size = i32::min(device_tile_size, image_rect.size.width);
    let y_device_tile_size = i32::min(device_tile_size, image_rect.size.height);

    // Size of regular tiles in layout space.
    let layout_tile_size = LayoutSize::new(
        x_device_tile_size as f32 / image_rect.size.width as f32 * prim_rect.size.width,
        y_device_tile_size as f32 / image_rect.size.height as f32 * prim_rect.size.height,
    );

    // The decomposition logic is exactly the same on each axis so we reduce
    // this to a 1-dimensional problem in an attempt to make the code simpler.

    let x_extent = tiles_1d(
        layout_tile_size.width,
        visible_rect.x_range(),
        prim_rect.min_x(),
        device_image_range_x,
        x_device_tile_size,
    );

    let y_extent = tiles_1d(
        layout_tile_size.height,
        visible_rect.y_range(),
        prim_rect.min_y(),
        device_image_range_y,
        y_device_tile_size,
    );

    TileIterator {
        current_tile: point2(
            x_extent.tile_range.start,
            y_extent.tile_range.start,
        ),
        x: x_extent,
        y: y_extent,
        regular_tile_size: layout_tile_size,
        local_origin: prim_rect.origin,
    }
}

/// Decompose tiles along an arbitrary axis.
///
/// This does most of the heavy lifting needed for `tiles` but in a single dimension for
/// the sake of simplicity since the problem is independent on the x and y axes.
fn tiles_1d(
    layout_tile_size: f32,
    layout_visible_range: Range<f32>,
    layout_prim_start: f32,
    device_image_range: Range<i32>,
    device_tile_size: i32,
) -> TileIteratorExtent {
    // A few sanity checks.
    debug_assert!(layout_tile_size > 0.0);
    debug_assert!(layout_visible_range.end >= layout_visible_range.start);
    debug_assert!(device_image_range.end > device_image_range.start);
    debug_assert!(device_tile_size > 0);

    // Sizes of the boundary tiles in pixels.
    let first_tile_device_size = first_tile_size_1d(&device_image_range, device_tile_size);
    let last_tile_device_size = last_tile_size_1d(&device_image_range, device_tile_size);

    // [start..end[ Range of tiles of this row/column (in number of tiles) without
    // taking culling into account.
    let image_tiles = tile_range_1d(&device_image_range, device_tile_size);

    // Layout offset of tile (0, 0) with respect to the top-left corner of the display item.
    let layout_offset = device_image_range.start as f32 * layout_tile_size / device_tile_size as f32;
    // Position in layout space of tile (0, 0).
    let layout_tiling_origin = layout_prim_start - layout_offset;

    // [start..end[ Range of the visible tiles (because of culling).
    let visible_tiles_start = f32::floor((layout_visible_range.start - layout_tiling_origin) / layout_tile_size) as i32;
    let visible_tiles_end = f32::ceil((layout_visible_range.end - layout_tiling_origin) / layout_tile_size) as i32;

    // Combine the above two to get the tiles in the image that are visible this frame.
    let tiles_start = i32::max(image_tiles.start, visible_tiles_start);
    let tiles_end = i32::min(image_tiles.end, visible_tiles_end);

    // The size in layout space of the boundary tiles.
    let first_tile_layout_size = if tiles_start == image_tiles.start {
        first_tile_device_size as f32 * layout_tile_size / device_tile_size as f32
    } else {
        // boundary tile was culled out, so the new first tile is a regularly sized tile.
        layout_tile_size
    };

    // Same here.
    let last_tile_layout_size = if tiles_end == image_tiles.end {
        last_tile_device_size as f32 * layout_tile_size / device_tile_size as f32
    } else {
        layout_tile_size
    };

    TileIteratorExtent {
        tile_range: tiles_start..tiles_end,
        first_tile_layout_size,
        last_tile_layout_size,
    }
}

/// Compute the range of tiles (in number of tiles) that intersect the provided
/// image range (in pixels) in an arbitrary dimension.
///
/// ```ignore
///
///         0
///         :
///   #-+---+---+---+---+---+--#
///   # |   |   |   |   |   |  #
///   #-+---+---+---+---+---+--#
/// ^       :                   ^
///
///  +------------------------+  image_range
///        +---+  regular_tile_size
///
/// ```
fn tile_range_1d(
    image_range: &Range<i32>,
    regular_tile_size: i32,
) -> Range<i32> {
    // Integer division truncates towards zero so with negative values if the first/last
    // tile isn't a full tile we can get offset by one which we account for here.

    let mut start = image_range.start / regular_tile_size;
    if image_range.start % regular_tile_size < 0 {
        start -= 1;
    }

    let mut end = image_range.end / regular_tile_size;
    if image_range.end % regular_tile_size > 0 {
        end += 1;
    }

    start..end
}

// Sizes of the first boundary tile in pixels.
//
// It can be smaller than the regular tile size if the image is not a multiple
// of the regular tile size.
fn first_tile_size_1d(
    image_range: &Range<i32>,
    regular_tile_size: i32,
) -> i32 {
    // We have to account for how the % operation behaves for negative values.
    let image_size = image_range.end - image_range.start;
    i32::min(
        match image_range.start % regular_tile_size {
            //             .      #------+------+      .
            //             .      #//////|      |      .
            0 => regular_tile_size,
            //   (zero) -> 0      .   #--+------+      .
            //             .      .   #//|      |      .
            // %(m):                  ~~>
            m if m > 0 => regular_tile_size - m,
            //             .      .   #--+------+      0 <- (zero)
            //             .      .   #//|      |      .
            // %(m):                  <~~
            m => -m,
        },
        image_size
    )
}

// Sizes of the last boundary tile in pixels.
//
// It can be smaller than the regular tile size if the image is not a multiple
// of the regular tile size.
fn last_tile_size_1d(
    image_range: &Range<i32>,
    regular_tile_size: i32,
) -> i32 {
    // We have to account for how the modulo operation behaves for negative values.
    let image_size = image_range.end - image_range.start;
    i32::min(
        match image_range.end % regular_tile_size {
            //                    +------+------#      .
            // tiles:      .      |      |//////#      .
            0 => regular_tile_size,
            //             .      +------+--#   .      0 <- (zero)
            //             .      |      |//#   .      .
            // modulo (m):                   <~~
            m if m < 0 => regular_tile_size + m,
            //   (zero) -> 0      +------+--#   .      .
            //             .      |      |//#   .      .
            // modulo (m):                ~~>
            m => m,
        },
        image_size,
    )
}

// Compute the width and height in pixels of a tile depending on its position in the image.
pub fn compute_tile_size(
    image_rect: &DeviceIntRect,
    regular_tile_size: TileSize,
    tile: TileOffset,
) -> DeviceIntSize {
    let regular_tile_size = regular_tile_size as i32;
    size2(
        compute_tile_size_1d(image_rect.x_range(), regular_tile_size, tile.x as i32),
        compute_tile_size_1d(image_rect.y_range(), regular_tile_size, tile.y as i32),
    )
}

fn compute_tile_size_1d(
    img_range: Range<i32>,
    regular_tile_size: i32,
    tile_offset: i32,
) -> i32 {
    let tile_range = tile_range_1d(&img_range, regular_tile_size);

    // Most tiles are going to have base_size as width and height,
    // except for tiles around the edges that are shrunk to fit the image data.
    let actual_size = if tile_offset == tile_range.start {
        first_tile_size_1d(&img_range, regular_tile_size)
    } else if tile_offset == tile_range.end - 1 {
        last_tile_size_1d(&img_range, regular_tile_size)
    } else {
        regular_tile_size
    };

    assert!(actual_size > 0);

    actual_size
}

pub fn compute_tile_range(
    visible_area: &DeviceIntRect,
    tile_size: u16,
) -> TileRange {
    // Tile dimensions in normalized coordinates.
    let tw = 1. / (tile_size as f32);
    let th = 1. / (tile_size as f32);

    let t0 = point2(
        f32::floor(visible_area.origin.x as f32 * tw),
        f32::floor(visible_area.origin.y as f32 * th),
    ).try_cast::<i32>().unwrap_or_else(|| panic!("compute_tile_range bad values {:?} {:?}", visible_area, tile_size));

    let t1 = point2(
        f32::ceil(visible_area.max_x() as f32 * tw),
        f32::ceil(visible_area.max_y() as f32 * th),
    ).try_cast::<i32>().unwrap_or_else(|| panic!("compute_tile_range bad values {:?} {:?}", visible_area, tile_size));

    TileRange {
        origin: t0,
        size: (t1 - t0).to_size(),
    }
}

pub fn for_each_tile_in_range(
    range: &TileRange,
    mut callback: impl FnMut(TileOffset),
) {
    for y in range.y_range() {
        for x in range.x_range() {
            callback(point2(x, y));
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::collections::HashSet;
    use euclid::rect;

    // this checks some additional invariants
    fn checked_for_each_tile(
        prim_rect: &LayoutRect,
        visible_rect: &LayoutRect,
        device_image_rect: &DeviceIntRect,
        device_tile_size: i32,
        callback: &mut FnMut(&LayoutRect, TileOffset, EdgeAaSegmentMask),
    ) {
        let mut coverage = LayoutRect::zero();
        let mut seen_tiles = HashSet::new();
        for tile in tiles(
            prim_rect,
            visible_rect,
            device_image_rect,
            device_tile_size,
        ) {
            // make sure we don't get sent duplicate tiles
            assert!(!seen_tiles.contains(&tile.offset));
            seen_tiles.insert(tile.offset);
            coverage = coverage.union(&tile.rect);
            assert!(prim_rect.contains_rect(&tile.rect));
            callback(&tile.rect, tile.offset, tile.edge_flags);
        }
        assert!(prim_rect.contains_rect(&coverage));
        assert!(coverage.contains_rect(&visible_rect.intersection(&prim_rect).unwrap_or(LayoutRect::zero())));
    }

    #[test]
    fn basic() {
        let mut count = 0;
        checked_for_each_tile(&rect(0., 0., 1000., 1000.),
            &rect(75., 75., 400., 400.),
            &rect(0, 0, 400, 400),
            36,
            &mut |_tile_rect, _tile_offset, _tile_flags| {
                count += 1;
            },
        );
        assert_eq!(count, 36);
    }

    #[test]
    fn empty() {
        let mut count = 0;
        checked_for_each_tile(&rect(0., 0., 74., 74.),
              &rect(75., 75., 400., 400.),
              &rect(0, 0, 400, 400),
              36,
              &mut |_tile_rect, _tile_offset, _tile_flags| {
                count += 1;
              },
        );
        assert_eq!(count, 0);
    }

    #[test]
    fn test_tiles_1d() {
        // Exactly one full tile at positive offset.
        let result = tiles_1d(64.0, -10000.0..10000.0, 0.0, 0..64, 64);
        assert_eq!(result.tile_range.start, 0);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // Exactly one full tile at negative offset.
        let result = tiles_1d(64.0, -10000.0..10000.0, -64.0, -64..0, 64);
        assert_eq!(result.tile_range.start, -1);
        assert_eq!(result.tile_range.end, 0);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // Two full tiles at negative and positive offsets.
        let result = tiles_1d(64.0, -10000.0..10000.0, -64.0, -64..64, 64);
        assert_eq!(result.tile_range.start, -1);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // One partial tile at positive offset, non-zero origin, culled out.
        let result = tiles_1d(64.0, -100.0..10.0, 64.0, 64..310, 64);
        assert_eq!(result.tile_range.start, result.tile_range.end);

        // Two tiles at negative and positive offsets, one of which is culled out.
        // The remaining tile is partially culled but it should still generate a full tile.
        let result = tiles_1d(64.0, 10.0..10000.0, -64.0, -64..64, 64);
        assert_eq!(result.tile_range.start, 0);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);
        let result = tiles_1d(64.0, -10000.0..-10.0, -64.0, -64..64, 64);
        assert_eq!(result.tile_range.start, -1);
        assert_eq!(result.tile_range.end, 0);
        assert_eq!(result.first_tile_layout_size, 64.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // Stretched tile in layout space device tile size is 64 and layout tile size is 128.
        // So the resulting tile sizes in layout space should be multiplied by two.
        let result = tiles_1d(128.0, -10000.0..10000.0, -64.0, -64..32, 64);
        assert_eq!(result.tile_range.start, -1);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 128.0);
        assert_eq!(result.last_tile_layout_size, 64.0);

        // Two visible tiles (the rest is culled out).
        let result = tiles_1d(10.0, 0.0..20.0, 0.0, 0..64, 64);
        assert_eq!(result.tile_range.start, 0);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 10.0);
        assert_eq!(result.last_tile_layout_size, 10.0);

        // Two visible tiles at negative layout offsets (the rest is culled out).
        let result = tiles_1d(10.0, -20.0..0.0, -20.0, 0..64, 64);
        assert_eq!(result.tile_range.start, 0);
        assert_eq!(result.tile_range.end, 1);
        assert_eq!(result.first_tile_layout_size, 10.0);
        assert_eq!(result.last_tile_layout_size, 10.0);
    }

    #[test]
    fn test_tile_range_1d() {
        assert_eq!(tile_range_1d(&(0..256), 256), 0..1);
        assert_eq!(tile_range_1d(&(0..257), 256), 0..2);
        assert_eq!(tile_range_1d(&(-1..257), 256), -1..2);
        assert_eq!(tile_range_1d(&(-256..256), 256), -1..1);
        assert_eq!(tile_range_1d(&(-20..-10), 6), -4..-1);
    }

    #[test]
    fn test_first_last_tile_size_1d() {
        assert_eq!(first_tile_size_1d(&(0..10), 64), 10);
        assert_eq!(first_tile_size_1d(&(-20..0), 64), 20);

        assert_eq!(last_tile_size_1d(&(0..10), 64), 10);
        assert_eq!(last_tile_size_1d(&(-20..0), 64), 20);
    }

    #[test]
    fn doubly_partial_tiles() {
        // In the following tests the image is a single tile and none of the sides of the tile
        // align with the tile grid.
        // This can only happen when we have a single non-aligned partial tile and no regular
        // tiles.
        assert_eq!(first_tile_size_1d(&(300..310), 64), 10);
        assert_eq!(first_tile_size_1d(&(-20..-10), 64), 10);

        assert_eq!(last_tile_size_1d(&(300..310), 64), 10);
        assert_eq!(last_tile_size_1d(&(-20..-10), 64), 10);


        // One partial tile at positve offset, non-zero origin.
        let result = tiles_1d(64.0, -10000.0..10000.0, 0.0, 300..310, 64);
        assert_eq!(result.tile_range.start, 4);
        assert_eq!(result.tile_range.end, 5);
        assert_eq!(result.first_tile_layout_size, 10.0);
        assert_eq!(result.last_tile_layout_size, 10.0);
    }
}