Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsRegion_h__
#define nsRegion_h__
#include <stddef.h> // for size_t
#include <stdint.h> // for uint32_t, uint64_t
#include <ostream> // for std::ostream
#include <utility> // for mozilla::Move
#include "mozilla/ArrayView.h" // for ArrayView
#include "mozilla/gfx/MatrixFwd.h" // for mozilla::gfx::Matrix4x4
#include "nsCoord.h" // for nscoord
#include "nsMargin.h" // for nsIntMargin
#include "nsPoint.h" // for nsIntPoint, nsPoint
#include "nsRect.h" // for mozilla::gfx::IntRect, nsRect
#include "nsRectAbsolute.h"
#include "nsRegionFwd.h" // for nsIntRegion
#include "nsString.h" // for nsCString
#include "nsTArray.h"
#include "pixman.h"
// Uncomment this line to get additional integrity checking.
// #define DEBUG_REGIONS
#ifdef DEBUG_REGIONS
# include <sstream>
#endif
/* For information on the internal representation look at pixman-region.c
*
* This replaces an older homebrew implementation of nsRegion. The
* representation used here may use more rectangles than nsRegion however, the
* representation is canonical. This means that there's no need for an
* Optimize() method because for a paticular region there is only one
* representation. This means that nsIntRegion will have more predictable
* performance characteristics than the old nsRegion and should not become
* degenerate.
*
* The pixman region code originates from X11 which has spread to a variety of
* projects including Qt, Gtk, Wine. It should perform reasonably well.
*/
enum class VisitSide { TOP, BOTTOM, LEFT, RIGHT };
namespace regiondetails {
struct Band;
}
template <>
struct nsTArray_RelocationStrategy<regiondetails::Band> {
typedef nsTArray_RelocateUsingMoveConstructor<regiondetails::Band> Type;
};
namespace regiondetails {
template <typename T, typename E>
class UncheckedArray : public T {
public:
using T::Elements;
using T::Length;
UncheckedArray() = default;
MOZ_IMPLICIT UncheckedArray(T&& aSrc) : T(std::move(aSrc)) {}
E& operator[](size_t aIndex) { return Elements()[aIndex]; }
const E& operator[](size_t aIndex) const { return Elements()[aIndex]; }
E& LastElement() { return Elements()[Length() - 1]; }
const E& LastElement() const { return Elements()[Length() - 1]; }
using iterator = E*;
using const_iterator = const E*;
iterator begin() { return iterator(Elements()); }
const_iterator begin() const { return const_iterator(Elements()); }
const_iterator cbegin() const { return begin(); }
iterator end() { return iterator(Elements() + Length()); }
const_iterator end() const { return const_iterator(Elements() + Length()); }
const_iterator cend() const { return end(); }
};
struct Strip {
// Default constructor should never be called, but is required for
// vector::resize to compile.
Strip() { MOZ_CRASH(); }
Strip(int32_t aLeft, int32_t aRight) : left(aLeft), right(aRight) {}
bool operator!=(const Strip& aOther) const {
return left != aOther.left || right != aOther.right;
}
uint32_t Size() const { return right - left; }
int32_t left;
int32_t right;
};
struct Band {
using Strip = regiondetails::Strip;
#ifndef DEBUG
using StripArray =
regiondetails::UncheckedArray<CopyableAutoTArray<Strip, 2>, Strip>;
#else
using StripArray = CopyableAutoTArray<Strip, 2>;
#endif
MOZ_IMPLICIT Band(const nsRectAbsolute& aRect)
: top(aRect.Y()), bottom(aRect.YMost()) {
mStrips.AppendElement(Strip{aRect.X(), aRect.XMost()});
}
Band(const Band& aOther) = default;
Band(Band&& aOther) = default;
void InsertStrip(const Strip& aStrip) {
for (size_t i = 0; i < mStrips.Length(); i++) {
Strip& strip = mStrips[i];
if (strip.left > aStrip.right) {
// Current strip is beyond aStrip, insert aStrip before.
mStrips.InsertElementAt(i, aStrip);
return;
}
if (strip.right < aStrip.left) {
// Current strip is before aStrip, try the next.
continue;
}
// Current strip intersects with aStrip, extend to the lext.
strip.left = std::min(strip.left, aStrip.left);
if (strip.right >= aStrip.right) {
// Current strip extends beyond aStrip, done.
return;
}
size_t next = i;
next++;
// Consume any subsequent strips intersecting with aStrip.
while (next < mStrips.Length() && mStrips[next].left <= aStrip.right) {
strip.right = mStrips[next].right;
mStrips.RemoveElementAt(next);
}
// Extend the strip in case the aStrip goes on beyond it.
strip.right = std::max(strip.right, aStrip.right);
return;
}
mStrips.AppendElement(aStrip);
}
void SubStrip(const Strip& aStrip) {
for (size_t i = 0; i < mStrips.Length(); i++) {
Strip& strip = mStrips[i];
if (strip.left > aStrip.right) {
// Strip is entirely to the right of aStrip. Done.
return;
}
if (strip.right < aStrip.left) {
// Strip is entirely to the left of aStrip. Move on.
continue;
}
if (strip.left < aStrip.left) {
if (strip.right <= aStrip.right) {
strip.right = aStrip.left;
// This strip lies to the left of the start of aStrip.
continue;
}
// aStrip is completely contained by this strip.
Strip newStrip(aStrip.right, strip.right);
strip.right = aStrip.left;
if (i < mStrips.Length()) {
i++;
mStrips.InsertElementAt(i, newStrip);
} else {
mStrips.AppendElement(newStrip);
}
return;
}
// This strip lies to the right of the start of aStrip.
if (strip.right <= aStrip.right) {
// aStrip completely contains this strip.
mStrips.RemoveElementAt(i);
// Make sure we evaluate the strip now at i. This loop will increment.
i--;
continue;
}
strip.left = aStrip.right;
return;
}
}
bool Intersects(const Strip& aStrip) const {
for (const Strip& strip : mStrips) {
if (strip.left >= aStrip.right) {
return false;
}
if (strip.right <= aStrip.left) {
continue;
}
return true;
}
return false;
}
bool IntersectStripBounds(Strip& aStrip) const {
bool intersected = false;
int32_t rightMost;
for (const Strip& strip : mStrips) {
if (strip.left > aStrip.right) {
break;
}
if (strip.right <= aStrip.left) {
continue;
}
if (!intersected) {
// First intersection, this is where the left side begins.
aStrip.left = std::max(aStrip.left, strip.left);
}
intersected = true;
// Expand to the right for each intersecting strip found.
rightMost = std::min(strip.right, aStrip.right);
}
if (intersected) {
aStrip.right = rightMost;
} else {
aStrip.right = aStrip.left = 0;
}
return intersected;
}
bool ContainsStrip(const Strip& aStrip) const {
for (const Strip& strip : mStrips) {
if (strip.left > aStrip.left) {
return false;
}
if (strip.right >= aStrip.right) {
return true;
}
}
return false;
}
bool EqualStrips(const Band& aBand) const {
if (mStrips.Length() != aBand.mStrips.Length()) {
return false;
}
for (auto iter1 = mStrips.begin(), iter2 = aBand.mStrips.begin();
iter1 != mStrips.end(); iter1++, iter2++) {
if (*iter1 != *iter2) {
return false;
}
}
return true;
}
void IntersectStrip(const Strip& aStrip) {
size_t i = 0;
while (i < mStrips.Length()) {
Strip& strip = mStrips[i];
if (strip.right <= aStrip.left) {
mStrips.RemoveElementAt(i);
continue;
}
if (strip.left >= aStrip.right) {
mStrips.TruncateLength(i);
return;
}
strip.left = std::max(aStrip.left, strip.left);
strip.right = std::min(aStrip.right, strip.right);
i++;
}
}
void IntersectStrips(const Band& aOther) {
auto iter = mStrips.begin();
auto iterOther = aOther.mStrips.begin();
StripArray newStrips;
// This function finds the intersection between two sets of strips.
while (true) {
while (true) {
while (iter != mStrips.end() && iter->right <= iterOther->left) {
// Increment our current strip until it ends beyond aOther's current
// strip.
iter++;
}
if (iter == mStrips.end()) {
// End of our strips. Done.
break;
}
while (iterOther != aOther.mStrips.end() &&
iterOther->right <= iter->left) {
// Increment aOther's current strip until it lies beyond our current
// strip.
iterOther++;
}
if (iterOther == aOther.mStrips.end()) {
// End of aOther's strips. Done.
break;
}
if (iterOther->left < iter->right) {
// Intersection!
break;
}
}
if (iter == mStrips.end() || iterOther == aOther.mStrips.end()) {
break;
}
newStrips.AppendElement(Strip(std::max(iter->left, iterOther->left),
std::min(iterOther->right, iter->right)));
if (iterOther->right < iter->right) {
iterOther++;
if (iterOther == aOther.mStrips.end()) {
break;
}
} else {
iter++;
}
}
mStrips = std::move(newStrips);
}
bool Intersects(const Band& aOther) const {
auto iter = mStrips.begin();
auto iterOther = aOther.mStrips.begin();
// This function finds the intersection between two sets of strips.
while (true) {
while (true) {
while (iter != mStrips.end() && iter->right <= iterOther->left) {
// Increment our current strip until it ends beyond aOther's current
// strip.
iter++;
}
if (iter == mStrips.end()) {
// End of our strips. Done.
break;
}
while (iterOther != aOther.mStrips.end() &&
iterOther->right <= iter->left) {
// Increment aOther's current strip until it lies beyond our current
// strip.
iterOther++;
}
if (iterOther == aOther.mStrips.end()) {
// End of aOther's strips. Done.
break;
}
if (iterOther->left < iter->right) {
// Intersection!
break;
}
}
if (iter == mStrips.end() || iterOther == aOther.mStrips.end()) {
break;
}
return true;
}
return false;
}
void SubStrips(const Band& aOther) {
size_t idx = 0;
auto iterOther = aOther.mStrips.begin();
// This function finds the intersection between two sets of strips.
while (true) {
while (true) {
while (idx < mStrips.Length() &&
mStrips[idx].right <= iterOther->left) {
// Increment our current strip until it ends beyond aOther's current
// strip.
idx++;
}
if (idx == mStrips.Length()) {
// End of our strips. Done.
break;
}
while (iterOther != aOther.mStrips.end() &&
iterOther->right <= mStrips[idx].left) {
// Increment aOther's current strip until it lies beyond our current
// strip.
iterOther++;
}
if (iterOther == aOther.mStrips.end()) {
// End of aOther's strips. Done.
break;
}
if (iterOther->left < mStrips[idx].right) {
// Intersection!
break;
}
}
if (idx == mStrips.Length() || iterOther == aOther.mStrips.end()) {
break;
}
if (mStrips[idx].left < iterOther->left) {
size_t oldIdx = idx;
// Our strip starts beyond other's
if (mStrips[idx].right > iterOther->right) {
// Our strip ends beyond other's as well.
Strip newStrip(mStrips[idx]);
newStrip.left = iterOther->right;
mStrips.InsertElementAt(idx + 1, newStrip);
idx++;
}
mStrips[oldIdx].right = iterOther->left;
// Either idx was just incremented, or the current index no longer
// intersects with iterOther.
continue;
} else if (mStrips[idx].right > iterOther->right) {
mStrips[idx].left = iterOther->right;
// Current strip no longer intersects, continue.
iterOther++;
if (iterOther == aOther.mStrips.end()) {
break;
}
continue;
}
// Our current strip is completely contained by the other strip.
mStrips.RemoveElementAt(idx);
}
}
int32_t top;
int32_t bottom;
StripArray mStrips;
};
} // namespace regiondetails
class nsRegion {
public:
using Band = regiondetails::Band;
using Strip = regiondetails::Strip;
#ifndef DEBUG
using BandArray = regiondetails::UncheckedArray<nsTArray<Band>, Band>;
using StripArray = regiondetails::UncheckedArray<AutoTArray<Strip, 2>, Strip>;
#else
using BandArray = nsTArray<Band>;
using StripArray = AutoTArray<Strip, 2>;
#endif
typedef nsRect RectType;
typedef nsPoint PointType;
typedef nsMargin MarginType;
nsRegion() = default;
MOZ_IMPLICIT nsRegion(const nsRect& aRect) {
mBounds = nsRectAbsolute::FromRect(aRect);
}
MOZ_IMPLICIT nsRegion(const nsRectAbsolute& aRect) { mBounds = aRect; }
explicit nsRegion(mozilla::gfx::ArrayView<pixman_box32_t> aRects) {
for (uint32_t i = 0; i < aRects.Length(); i++) {
AddRect(BoxToRect(aRects[i]));
}
}
nsRegion(const nsRegion& aRegion) { Copy(aRegion); }
nsRegion(nsRegion&& aRegion)
: mBands(std::move(aRegion.mBands)), mBounds(aRegion.mBounds) {
aRegion.SetEmpty();
}
nsRegion& operator=(nsRegion&& aRegion) {
mBands = std::move(aRegion.mBands);
mBounds = aRegion.mBounds;
aRegion.SetEmpty();
return *this;
}
nsRegion& operator=(const nsRect& aRect) {
Copy(aRect);
return *this;
}
nsRegion& operator=(const nsRegion& aRegion) {
Copy(aRegion);
return *this;
}
bool operator==(const nsRegion& aRgn) const { return IsEqual(aRgn); }
bool operator!=(const nsRegion& aRgn) const { return !(*this == aRgn); }
friend std::ostream& operator<<(std::ostream& stream, const nsRegion& m);
void OutputToStream(std::string aObjName, std::ostream& stream) const;
private:
#ifdef DEBUG_REGIONS
class OperationStringGenerator {
public:
virtual ~OperationStringGenerator() = default;
virtual void OutputOp() = 0;
};
#endif
public:
void AssertStateInternal() const;
void AssertState() const {
#ifdef DEBUG_REGIONS
AssertStateInternal();
#endif
}
private:
void And(BandArray& aOut, const BandArray& aIn1, const BandArray& aIn2) {
size_t idx = 0;
size_t idxOther = 0;
// This algorithm essentially forms a new list of bands, by iterating over
// both regions' lists of band simultaneously, and building a new band
// wherever the two regions intersect.
while (true) {
while (true) {
while (idx != aIn1.Length() && aIn1[idx].bottom <= aIn2[idxOther].top) {
// Increment our current band until it ends beyond aOther's current
// band.
idx++;
}
if (idx == aIn1.Length()) {
// This region is out of bands, the other region's future bands are
// ignored.
break;
}
while (idxOther != aIn2.Length() &&
aIn2[idxOther].bottom <= aIn1[idx].top) {
// Increment aOther's current band until it ends beyond our current
// band.
idxOther++;
}
if (idxOther == aIn2.Length()) {
// The other region's bands are all processed, all our future bands
// are ignored.
break;
}
if (aIn2[idxOther].top < aIn1[idx].bottom) {
// We know the other band's bottom lies beyond our band's top because
// otherwise we would've incremented above. Intersecting bands found.
break;
}
}
if (idx == aIn1.Length() || idxOther == aIn2.Length()) {
// The above loop executed a break because we're done.
break;
}
Band newBand(aIn1[idx]);
// The new band is the intersection of the two current bands from both
// regions.
newBand.top = std::max(aIn1[idx].top, aIn2[idxOther].top);
newBand.bottom = std::min(aIn1[idx].bottom, aIn2[idxOther].bottom);
newBand.IntersectStrips(aIn2[idxOther]);
if (newBand.mStrips.Length()) {
// The intersecting area of the bands had overlapping strips, if it is
// identical to the band above it merge, otherwise append.
if (aOut.Length() && aOut.LastElement().bottom == newBand.top &&
aOut.LastElement().EqualStrips(newBand)) {
aOut.LastElement().bottom = newBand.bottom;
} else {
aOut.AppendElement(std::move(newBand));
}
}
if (aIn2[idxOther].bottom < aIn1[idx].bottom) {
idxOther++;
if (idxOther == aIn2.Length()) {
// Since we will access idxOther the next iteration, check if we're
// not done.
break;
}
} else {
// No need to check here since we do at the beginning of the next
// iteration.
idx++;
}
}
}
public:
nsRegion& AndWith(const nsRegion& aRegion) {
#ifdef DEBUG_REGIONS
class OperationStringGeneratorAndWith : public OperationStringGenerator {
public:
OperationStringGeneratorAndWith(nsRegion& aRegion,
const nsRegion& aOtherRegion)
: mRegion(&aRegion),
mRegionCopy(aRegion),
mOtherRegion(aOtherRegion) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorAndWith() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegionCopy.OutputToStream("r1", stream);
mOtherRegion.OutputToStream("r2", stream);
stream << "r1.AndWith(r2);\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegionCopy;
nsRegion mOtherRegion;
};
OperationStringGeneratorAndWith opGenerator(*this, aRegion);
#endif
if (mBounds.IsEmpty()) {
// Region is empty, stays empty.
return *this;
}
if (aRegion.IsEmpty()) {
SetEmpty();
return *this;
}
if (aRegion.mBands.IsEmpty()) {
// Other region is a rect.
return AndWith(aRegion.mBounds);
}
if (mBands.IsEmpty()) {
mBands.AppendElement(mBounds);
}
BandArray newBands;
And(newBands, mBands, aRegion.mBands);
mBands = std::move(newBands);
if (!mBands.Length()) {
mBounds = nsRectAbsolute();
} else {
mBounds = CalculateBounds();
}
EnsureSimplified();
AssertState();
return *this;
}
nsRegion& AndWith(const nsRectAbsolute& aRect) {
#ifdef DEBUG_REGIONS
class OperationStringGeneratorAndWith : public OperationStringGenerator {
public:
OperationStringGeneratorAndWith(nsRegion& aRegion,
const nsRectAbsolute& aRect)
: mRegion(&aRegion), mRegionCopy(aRegion), mRect(aRect) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorAndWith() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegionCopy.OutputToStream("r", stream);
stream << "r.AndWith(nsRect(" << mRect.X() << ", " << mRect.Y() << ", "
<< mRect.Width() << ", " << mRect.Height() << "));\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegionCopy;
nsRectAbsolute mRect;
};
OperationStringGeneratorAndWith opGenerator(*this, aRect);
#endif
if (aRect.IsEmpty()) {
SetEmpty();
return *this;
}
if (mBands.IsEmpty()) {
mBounds = mBounds.Intersect(aRect);
return *this;
}
size_t idx = 0;
size_t removeStart = 0;
// This removes all bands that do not intersect with aRect, and intersects
// the remaining ones with aRect.
// Start by figuring out how much to remove from the start.
while (idx != mBands.Length() && mBands[idx].bottom <= aRect.Y()) {
idx++;
}
// We'll remove these later to avoid needless copying in the array.
removeStart = idx;
while (idx != mBands.Length()) {
if (mBands[idx].top >= aRect.YMost()) {
mBands.TruncateLength(idx);
break;
}
mBands[idx].top = std::max(mBands[idx].top, aRect.Y());
mBands[idx].bottom = std::min(mBands[idx].bottom, aRect.YMost());
mBands[idx].IntersectStrip(Strip(aRect.X(), aRect.XMost()));
if (!mBands[idx].mStrips.Length()) {
mBands.RemoveElementAt(idx);
} else {
if (idx > removeStart) {
CompressBefore(idx);
}
idx++;
}
}
if (removeStart) {
mBands.RemoveElementsAt(0, removeStart);
}
if (mBands.Length()) {
mBounds = CalculateBounds();
} else {
mBounds.SetEmpty();
}
EnsureSimplified();
AssertState();
return *this;
}
nsRegion& AndWith(const nsRect& aRect) {
return AndWith(nsRectAbsolute::FromRect(aRect));
}
nsRegion& And(const nsRegion& aRgn1, const nsRegion& aRgn2) {
if (&aRgn1 == this) {
return AndWith(aRgn2);
}
#ifdef DEBUG_REGIONS
class OperationStringGeneratorAnd : public OperationStringGenerator {
public:
OperationStringGeneratorAnd(nsRegion& aRegion, const nsRegion& aRegion1,
const nsRegion& aRegion2)
: mRegion(&aRegion), mRegion1(aRegion1), mRegion2(aRegion2) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorAnd() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegion1.OutputToStream("r1", stream);
mRegion2.OutputToStream("r2", stream);
stream << "nsRegion r3;\nr3.And(r1, r2);\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegion1;
nsRegion mRegion2;
};
OperationStringGeneratorAnd opGenerator(*this, aRgn1, aRgn2);
#endif
mBands.Clear();
if (aRgn1.IsEmpty() || aRgn2.IsEmpty()) {
mBounds.SetEmpty();
return *this;
}
if (aRgn1.mBands.IsEmpty() && aRgn2.mBands.IsEmpty()) {
mBounds = aRgn1.mBounds.Intersect(aRgn2.mBounds);
return *this;
} else if (aRgn1.mBands.IsEmpty()) {
return And(aRgn2, aRgn1.mBounds);
} else if (aRgn2.mBands.IsEmpty()) {
return And(aRgn1, aRgn2.mBounds);
}
And(mBands, aRgn1.mBands, aRgn2.mBands);
if (!mBands.Length()) {
mBounds = nsRectAbsolute();
} else {
mBounds = CalculateBounds();
}
EnsureSimplified();
AssertState();
return *this;
}
nsRegion& And(const nsRect& aRect, const nsRegion& aRegion) {
return And(aRegion, aRect);
}
nsRegion& And(const nsRegion& aRegion, const nsRectAbsolute& aRect) {
if (&aRegion == this) {
return AndWith(aRect);
}
#ifdef DEBUG_REGIONS
class OperationStringGeneratorAnd : public OperationStringGenerator {
public:
OperationStringGeneratorAnd(nsRegion& aThisRegion,
const nsRegion& aRegion,
const nsRectAbsolute& aRect)
: mThisRegion(&aThisRegion), mRegion(aRegion), mRect(aRect) {
aThisRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorAnd() {
mThisRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegion.OutputToStream("r", stream);
stream << "nsRegion r2;\nr.And(r2, nsRect(" << mRect.X() << ", "
<< mRect.Y() << ", " << mRect.Width() << ", " << mRect.Height()
<< "));\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mThisRegion;
nsRegion mRegion;
nsRectAbsolute mRect;
};
OperationStringGeneratorAnd opGenerator(*this, aRegion, aRect);
#endif
mBands.Clear();
if (aRect.IsEmpty()) {
mBounds.SetEmpty();
return *this;
}
if (aRegion.mBands.IsEmpty()) {
mBounds = aRegion.mBounds.Intersect(aRect);
return *this;
}
size_t idx = 0;
const BandArray& bands = aRegion.mBands;
mBands.SetCapacity(bands.Length() + 3);
while (idx != bands.Length()) {
// Ignore anything before.
if (bands[idx].bottom <= aRect.Y()) {
idx++;
continue;
}
// We're done once we've reached the bottom.
if (bands[idx].top >= aRect.YMost()) {
break;
}
// Now deal with bands actually intersecting the rectangle.
Band newBand(bands[idx]);
newBand.top = std::max(bands[idx].top, aRect.Y());
newBand.bottom = std::min(bands[idx].bottom, aRect.YMost());
newBand.IntersectStrip(Strip(aRect.X(), aRect.XMost()));
if (newBand.mStrips.Length()) {
if (!mBands.IsEmpty() && newBand.top == mBands.LastElement().bottom &&
newBand.EqualStrips(mBands.LastElement())) {
mBands.LastElement().bottom = newBand.bottom;
} else {
mBands.AppendElement(std::move(newBand));
}
}
idx++;
}
if (mBands.Length()) {
mBounds = CalculateBounds();
} else {
mBounds.SetEmpty();
}
EnsureSimplified();
AssertState();
return *this;
}
nsRegion& And(const nsRegion& aRegion, const nsRect& aRect) {
return And(aRegion, nsRectAbsolute::FromRect(aRect));
}
nsRegion& And(const nsRect& aRect1, const nsRect& aRect2) {
nsRect tmpRect;
tmpRect.IntersectRect(aRect1, aRect2);
return Copy(tmpRect);
}
nsRegion& OrWith(const nsRegion& aOther) {
for (RectIterator idx(aOther); !idx.Done(); idx.Next()) {
AddRect(idx.GetAbsolute());
}
return *this;
}
nsRegion& OrWith(const nsRect& aOther) {
AddRect(nsRectAbsolute::FromRect(aOther));
return *this;
}
nsRegion& Or(const nsRegion& aRgn1, const nsRegion& aRgn2) {
if (&aRgn1 != this) {
*this = aRgn1;
}
for (RectIterator idx(aRgn2); !idx.Done(); idx.Next()) {
AddRect(idx.GetAbsolute());
}
return *this;
}
nsRegion& Or(const nsRegion& aRegion, const nsRect& aRect) {
if (&aRegion != this) {
*this = aRegion;
}
AddRect(nsRectAbsolute::FromRect(aRect));
return *this;
}
nsRegion& Or(const nsRect& aRect, const nsRegion& aRegion) {
return Or(aRegion, aRect);
}
nsRegion& Or(const nsRect& aRect1, const nsRect& aRect2) {
Copy(aRect1);
return Or(*this, aRect2);
}
nsRegion& XorWith(const nsRegion& aOther) { return Xor(*this, aOther); }
nsRegion& XorWith(const nsRect& aOther) { return Xor(*this, aOther); }
nsRegion& Xor(const nsRegion& aRgn1, const nsRegion& aRgn2) {
// this could be implemented better if pixman had direct
// support for xoring regions.
nsRegion p;
p.Sub(aRgn1, aRgn2);
nsRegion q;
q.Sub(aRgn2, aRgn1);
return Or(p, q);
}
nsRegion& Xor(const nsRegion& aRegion, const nsRect& aRect) {
return Xor(aRegion, nsRegion(aRect));
}
nsRegion& Xor(const nsRect& aRect, const nsRegion& aRegion) {
return Xor(nsRegion(aRect), aRegion);
}
nsRegion& Xor(const nsRect& aRect1, const nsRect& aRect2) {
return Xor(nsRegion(aRect1), nsRegion(aRect2));
}
nsRegion ToAppUnits(nscoord aAppUnitsPerPixel) const;
nsRegion& SubWith(const nsRegion& aOther) {
#ifdef DEBUG_REGIONS
class OperationStringGeneratorSubWith : public OperationStringGenerator {
public:
OperationStringGeneratorSubWith(nsRegion& aRegion,
const nsRegion& aOtherRegion)
: mRegion(&aRegion),
mRegionCopy(aRegion),
mOtherRegion(aOtherRegion) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorSubWith() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegionCopy.OutputToStream("r1", stream);
mOtherRegion.OutputToStream("r2", stream);
stream << "r1.SubWith(r2);\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegionCopy;
nsRegion mOtherRegion;
};
OperationStringGeneratorSubWith opGenerator(*this, aOther);
#endif
if (mBounds.IsEmpty()) {
return *this;
}
if (aOther.mBands.IsEmpty()) {
return SubWith(aOther.mBounds);
}
if (mBands.IsEmpty()) {
mBands.AppendElement(Band(mBounds));
}
size_t idx = 0;
size_t idxOther = 0;
while (idx < mBands.Length()) {
while (true) {
while (idx != mBands.Length() &&
mBands[idx].bottom <= aOther.mBands[idxOther].top) {
// Increment our current band until it ends beyond aOther's current
// band.
idx++;
}
if (idx == mBands.Length()) {
// This region is out of bands, the other region's future bands are
// ignored.
break;
}
while (idxOther != aOther.mBands.Length() &&
aOther.mBands[idxOther].bottom <= mBands[idx].top) {
// Increment aOther's current band until it ends beyond our current
// band.
idxOther++;
}
if (idxOther == aOther.mBands.Length()) {
// The other region's bands are all processed, all our future bands
// are ignored.
break;
}
if (aOther.mBands[idxOther].top < mBands[idx].bottom) {
// We know the other band's bottom lies beyond our band's top because
// otherwise we would've incremented above. Intersecting bands found.
break;
}
}
if (idx == mBands.Length() || idxOther == aOther.mBands.Length()) {
// The above loop executed a break because we're done.
break;
}
const Band& bandOther = aOther.mBands[idxOther];
if (!mBands[idx].Intersects(bandOther)) {
if (mBands[idx].bottom < bandOther.bottom) {
idx++;
} else {
idxOther++;
if (idxOther == aOther.mBands.Length()) {
break;
}
}
continue;
}
// These bands actually intersect.
if (mBands[idx].top < bandOther.top) {
mBands.InsertElementAt(idx + 1, Band(mBands[idx]));
mBands[idx].bottom = bandOther.top;
idx++;
mBands[idx].top = bandOther.top;
}
// mBands[idx].top >= bandOther.top;
if (mBands[idx].bottom <= bandOther.bottom) {
mBands[idx].SubStrips(bandOther);
if (mBands[idx].mStrips.IsEmpty()) {
mBands.RemoveElementAt(idx);
} else {
CompressBefore(idx);
idx++;
// The band before us just changed, it may be identical now.
CompressBefore(idx);
}
continue;
}
// mBands[idx].bottom > bandOther.bottom
Band newBand = mBands[idx];
newBand.SubStrips(bandOther);
if (!newBand.mStrips.IsEmpty()) {
mBands.InsertElementAt(idx, newBand);
mBands[idx].bottom = bandOther.bottom;
CompressBefore(idx);
idx++;
}
mBands[idx].top = bandOther.bottom;
idxOther++;
if (idxOther == aOther.mBands.Length()) {
break;
}
}
if (mBands.IsEmpty()) {
mBounds.SetEmpty();
} else {
mBounds = CalculateBounds();
}
AssertState();
EnsureSimplified();
return *this;
}
nsRegion& SubOut(const nsRegion& aOther) { return SubWith(aOther); }
nsRegion& SubOut(const nsRect& aOther) { return SubWith(aOther); }
private:
void AppendOrExtend(const Band& aNewBand) {
if (aNewBand.mStrips.IsEmpty()) {
return;
}
if (mBands.IsEmpty()) {
mBands.AppendElement(aNewBand);
return;
}
if (mBands.LastElement().bottom == aNewBand.top &&
mBands.LastElement().EqualStrips(aNewBand)) {
mBands.LastElement().bottom = aNewBand.bottom;
} else {
mBands.AppendElement(aNewBand);
}
}
void AppendOrExtend(const Band&& aNewBand) {
if (aNewBand.mStrips.IsEmpty()) {
return;
}
if (mBands.IsEmpty()) {
mBands.AppendElement(std::move(aNewBand));
return;
}
if (mBands.LastElement().bottom == aNewBand.top &&
mBands.LastElement().EqualStrips(aNewBand)) {
mBands.LastElement().bottom = aNewBand.bottom;
} else {
mBands.AppendElement(std::move(aNewBand));
}
}
public:
nsRegion& Sub(const nsRegion& aRgn1, const nsRegion& aRgn2) {
if (&aRgn1 == this) {
return SubWith(aRgn2);
}
#ifdef DEBUG_REGIONS
class OperationStringGeneratorSub : public OperationStringGenerator {
public:
OperationStringGeneratorSub(nsRegion& aRegion, const nsRegion& aRgn1,
const nsRegion& aRgn2)
: mRegion(&aRegion), mRegion1(aRgn1), mRegion2(aRgn2) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorSub() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegion1.OutputToStream("r1", stream);
mRegion2.OutputToStream("r2", stream);
stream << "nsRegion r3;\nr3.Sub(r1, r2);\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegion1;
nsRegion mRegion2;
};
OperationStringGeneratorSub opGenerator(*this, aRgn1, aRgn2);
#endif
mBands.Clear();
if (aRgn1.mBounds.IsEmpty()) {
mBounds.SetEmpty();
return *this;
}
if (aRgn2.mBounds.IsEmpty()) {
Copy(aRgn1);
return *this;
}
if (aRgn1.mBands.IsEmpty() && aRgn2.mBands.IsEmpty()) {
return Sub(aRgn1.mBounds, aRgn2.mBounds);
} else if (aRgn1.mBands.IsEmpty()) {
return Sub(aRgn1.mBounds, aRgn2);
} else if (aRgn2.mBands.IsEmpty()) {
return Sub(aRgn1, aRgn2.mBounds);
}
const BandArray& bands1 = aRgn1.mBands;
const BandArray& bands2 = aRgn2.mBands;
size_t idx = 0;
size_t idxOther = 0;
// We iterate the source region's bands, subtracting the other regions bands
// from them as we move them into ours.
while (idx < bands1.Length()) {
while (idxOther < bands2.Length() &&
bands2[idxOther].bottom <= bands1[idx].top) {
// These other bands are irrelevant as they don't intersect with the
// band we're currently processing.
idxOther++;
}
if (idxOther == bands2.Length()) {
break;
}
const Band& other = bands2[idxOther];
// bands2[idxOther].bottom >= bands1[idx].top
Band origBand(bands1[idx]);
if (other.top >= origBand.bottom) {
// No intersecting bands, append and continue.
AppendOrExtend(origBand);
idx++;
continue;
}
// Push a band for an uncovered region above our band.
if (origBand.top < other.top) {
Band newBand(origBand);
newBand.bottom = other.top;
AppendOrExtend(std::move(newBand));
}
int32_t lastBottom = std::max(other.top, origBand.top);
while (idxOther < bands2.Length() &&
bands2[idxOther].top < origBand.bottom) {
const Band& other = bands2[idxOther];
Band newBand(origBand);
newBand.top = std::max(origBand.top, other.top);
newBand.bottom = std::min(origBand.bottom, other.bottom);
// If there was a gap, we need to add the original band there.
if (newBand.top > lastBottom) {
Band betweenBand(newBand);
betweenBand.top = lastBottom;
betweenBand.bottom = newBand.top;
AppendOrExtend(std::move(betweenBand));
}
lastBottom = newBand.bottom;
newBand.SubStrips(other);
AppendOrExtend(std::move(newBand));
idxOther++;
}
// Decrement other here so we are back at the last band in region 2
// that intersected.
idxOther--;
if (bands2[idxOther].bottom < origBand.bottom) {
// The last band in region2 that intersected ended before this one,
// we can copy the rest.
Band newBand(origBand);
newBand.top = bands2[idxOther].bottom;
AppendOrExtend(std::move(newBand));
idxOther++;
}
idx++;
}
// Copy any remaining bands, the first one may have to be extended to fit
// the last one added before. The rest can be unconditionally appended.
if (idx < bands1.Length()) {
AppendOrExtend(bands1[idx]);
idx++;
}
while (idx < bands1.Length()) {
mBands.AppendElement(bands1[idx]);
idx++;
}
if (mBands.IsEmpty()) {
mBounds.SetEmpty();
} else {
mBounds = CalculateBounds();
}
AssertState();
EnsureSimplified();
return *this;
}
private:
// Internal helper for executing subtraction.
void RunSubtraction(const nsRectAbsolute& aRect) {
Strip rectStrip(aRect.X(), aRect.XMost());
size_t idx = 0;
while (idx < mBands.Length()) {
if (mBands[idx].top >= aRect.YMost()) {
return;
}
if (mBands[idx].bottom <= aRect.Y()) {
// This band is entirely before aRect, move on.
idx++;
continue;
}
if (!mBands[idx].Intersects(Strip(aRect.X(), aRect.XMost()))) {
// This band does not intersect aRect horizontally. Move on.
idx++;
continue;
}
// This band intersects with aRect.
if (mBands[idx].top < aRect.Y()) {
// This band starts above the start of aRect, split the band into two
// along the intersection, and continue to the next iteration to process
// the one that now intersects exactly.
auto above = mBands.InsertElementAt(idx, Band(mBands[idx]));
above->bottom = aRect.Y();
idx++;
mBands[idx].top = aRect.Y();
// Continue to run the loop for the next band.
continue;
}
if (mBands[idx].bottom <= aRect.YMost()) {
// This band ends before the end of aRect.
mBands[idx].SubStrip(rectStrip);
if (mBands[idx].mStrips.Length()) {
CompressAdjacentBands(idx);
} else {
mBands.RemoveElementAt(idx);
}
continue;
}
// This band extends beyond aRect.
Band newBand = mBands[idx];
newBand.SubStrip(rectStrip);
newBand.bottom = aRect.YMost();
mBands[idx].top = aRect.YMost();
if (newBand.mStrips.Length()) {
if (idx && mBands[idx - 1].bottom == newBand.top &&
newBand.EqualStrips(mBands[idx - 1])) {
mBands[idx - 1].bottom = aRect.YMost();
} else {
mBands.InsertElementAt(idx, std::move(newBand));
}
}
return;
}
}
public:
nsRegion& SubWith(const nsRectAbsolute& aRect) {
if (!mBounds.Intersects(aRect)) {
return *this;
}
if (aRect.Contains(mBounds)) {
SetEmpty();
return *this;
}
#ifdef DEBUG_REGIONS
class OperationStringGeneratorSubWith : public OperationStringGenerator {
public:
OperationStringGeneratorSubWith(nsRegion& aRegion,
const nsRectAbsolute& aRect)
: mRegion(&aRegion), mRegionCopy(aRegion), mRect(aRect) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorSubWith() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegionCopy.OutputToStream("r", stream);
stream << "r.SubWith(nsRect(" << mRect.X() << ", " << mRect.Y() << ", "
<< mRect.Width() << ", " << mRect.Height() << "));\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegionCopy;
nsRectAbsolute mRect;
};
OperationStringGeneratorSubWith opGenerator(*this, aRect);
#endif
if (mBands.IsEmpty()) {
mBands.AppendElement(Band(mBounds));
}
RunSubtraction(aRect);
if (aRect.X() <= mBounds.X() || aRect.Y() <= mBounds.Y() ||
aRect.XMost() >= mBounds.XMost() || aRect.YMost() >= mBounds.YMost()) {
mBounds = CalculateBounds();
}
EnsureSimplified();
AssertState();
return *this;
}
nsRegion& Sub(const nsRegion& aRegion, const nsRectAbsolute& aRect) {
if (aRect.Contains(aRegion.mBounds)) {
SetEmpty();
return *this;
}
if (&aRegion == this) {
return SubWith(aRect);
}
#ifdef DEBUG_REGIONS
class OperationStringGeneratorSub : public OperationStringGenerator {
public:
OperationStringGeneratorSub(nsRegion& aRegion,
const nsRegion& aRegionOther,
const nsRectAbsolute& aRect)
: mRegion(&aRegion), mRegionOther(aRegionOther), mRect(aRect) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorSub() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegionOther.OutputToStream("r1", stream);
stream << "nsRegion r2;\nr2.Sub(r1, nsRect(" << mRect.X() << ", "
<< mRect.Y() << ", " << mRect.Width() << ", " << mRect.Height()
<< "));\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegionOther;
nsRectAbsolute mRect;
};
OperationStringGeneratorSub opGenerator(*this, aRegion, aRect);
#endif
mBands.Clear();
if (aRegion.mBounds.IsEmpty()) {
mBounds.SetEmpty();
return *this;
}
if (aRect.IsEmpty()) {
Copy(aRegion);
return *this;
}
if (aRegion.mBands.IsEmpty()) {
Copy(aRegion.mBounds);
return SubWith(aRect);
}
const BandArray& bands = aRegion.mBands;
size_t idx = 0;
Strip strip(aRect.X(), aRect.XMost());
mBands.SetCapacity(bands.Length() + 3);
// Process all bands that lie before aRect.
while (idx < bands.Length() && bands[idx].bottom <= aRect.Y()) {
mBands.AppendElement(bands[idx]);
idx++;
}
// This band's bottom lies beyond aRect.
if (idx < bands.Length() && bands[idx].top < aRect.Y()) {
Band newBand(bands[idx]);
if (bands[idx].Intersects(strip)) {
newBand.bottom = aRect.Y();
} else {
idx++;
}
mBands.AppendElement(std::move(newBand));
}
// This tracks whether the band when we -exit- the next loop intersected the
// rectangle.
bool didIntersect = false;
while (idx < bands.Length() && bands[idx].top < aRect.YMost()) {
// Process all bands intersecting with aRect.
if (!bands[idx].Intersects(strip)) {
AppendOrExtend(bands[idx]);
idx++;
didIntersect = false;
continue;
}
didIntersect = true;
Band newBand(bands[idx]);
newBand.top = std::max(newBand.top, aRect.Y());
newBand.bottom = std::min(newBand.bottom, aRect.YMost());
newBand.SubStrip(strip);
AppendOrExtend(std::move(newBand));
idx++;
}
if (didIntersect) {
if (aRect.YMost() < bands[idx - 1].bottom) {
// If this band does not intersect the loop above has already added the
// whole unmodified band.
Band newBand(bands[idx - 1]);
newBand.top = aRect.YMost();
AppendOrExtend(std::move(newBand));
}
}
// Now process all bands beyond aRect.
if (idx < bands.Length()) {
AppendOrExtend(bands[idx]);
idx++;
}
mBands.AppendElements(bands.Elements() + idx, bands.Length() - idx);
if (mBands.IsEmpty()) {
mBounds.SetEmpty();
} else {
mBounds = CalculateBounds();
}
AssertState();
EnsureSimplified();
return *this;
}
nsRegion& SubWith(const nsRect& aRect) {
return SubWith(nsRectAbsolute::FromRect(aRect));
}
nsRegion& Sub(const nsRect& aRect, const nsRegion& aRegion) {
Copy(aRect);
return SubWith(aRegion);
}
nsRegion& Sub(const nsRectAbsolute& aRect, const nsRegion& aRegion) {
Copy(aRect);
return SubWith(aRegion);
}
nsRegion& Sub(const nsRect& aRect1, const nsRect& aRect2) {
Copy(aRect1);
return SubWith(aRect2);
}
nsRegion& Sub(const nsRegion& aRegion, const nsRect& aRect) {
return Sub(aRegion, nsRectAbsolute::FromRect(aRect));
}
nsRegion& Sub(const nsRectAbsolute& aRect1, const nsRectAbsolute& aRect2) {
Copy(aRect1);
return SubWith(aRect2);
}
/**
* Returns true if the given point is inside the region. A region
* created from a rect (x=0, y=0, w=100, h=100) will NOT contain
* the point x=100, y=100.
*/
bool Contains(int aX, int aY) const {
if (mBands.IsEmpty()) {
return mBounds.Contains(aX, aY);
}
auto iter = mBands.begin();
while (iter != mBands.end()) {
if (iter->bottom <= aY) {
iter++;
continue;
}
if (iter->top > aY) {
return false;
}
if (iter->ContainsStrip(Strip(aX, aX + 1))) {
return true;
}
return false;
}
return false;
}
bool Contains(const nsPoint& aPoint) const {
return Contains(aPoint.x, aPoint.y);
}
bool Contains(const nsRectAbsolute& aRect) const {
if (aRect.IsEmpty()) {
return false;
}
if (mBands.IsEmpty()) {
return mBounds.Contains(aRect);
}
auto iter = mBands.begin();
while (iter != mBands.end()) {
if (iter->bottom <= aRect.Y()) {
iter++;
continue;
}
if (iter->top > aRect.Y()) {
return false;
}
// Now inside the rectangle.
if (!iter->ContainsStrip(Strip(aRect.X(), aRect.XMost()))) {
return false;
}
if (iter->bottom >= aRect.YMost()) {
return true;
}
int32_t lastY = iter->bottom;
iter++;
while (iter != mBands.end()) {
// Bands do not connect.
if (iter->top != lastY) {
return false;
}
if (!iter->ContainsStrip(Strip(aRect.X(), aRect.XMost()))) {
return false;
}
if (iter->bottom >= aRect.YMost()) {
return true;
}
lastY = iter->bottom;
iter++;
}
}
return false;
}
bool Contains(const nsRect& aRect) const {
return Contains(nsRectAbsolute::FromRect(aRect));
}
bool Contains(const nsRegion& aRgn) const;
bool Intersects(const nsRectAbsolute& aRect) const;
bool Intersects(const nsRect& aRect) const {
return Intersects(nsRectAbsolute::FromRect(aRect));
}
void MoveBy(int32_t aXOffset, int32_t aYOffset) {
MoveBy(nsPoint(aXOffset, aYOffset));
}
void MoveBy(nsPoint aPt) {
#ifdef DEBUG_REGIONS
class OperationStringGeneratorMoveBy : public OperationStringGenerator {
public:
OperationStringGeneratorMoveBy(nsRegion& aRegion, const nsPoint& aPoint)
: mRegion(&aRegion), mRegionCopy(aRegion), mPoint(aPoint) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorMoveBy() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegionCopy.OutputToStream("r", stream);
stream << "r.MoveBy(nsPoint(" << mPoint.x << ", " << mPoint.y
<< "));\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegionCopy;
nsPoint mPoint;
};
OperationStringGeneratorMoveBy opGenerator(*this, aPt);
#endif
mBounds.MoveBy(aPt);
for (Band& band : mBands) {
band.top += aPt.Y();
band.bottom += aPt.Y();
for (Strip& strip : band.mStrips) {
strip.left += aPt.X();
strip.right += aPt.X();
}
}
AssertState();
}
void SetEmpty() {
mBands.Clear();
mBounds.SetEmpty();
}
nsRegion MovedBy(int32_t aXOffset, int32_t aYOffset) const {
return MovedBy(nsPoint(aXOffset, aYOffset));
}
nsRegion MovedBy(const nsPoint& aPt) const {
nsRegion copy(*this);
copy.MoveBy(aPt);
return copy;
}
nsRegion Intersect(const nsRegion& aOther) const {
nsRegion intersection;
intersection.And(*this, aOther);
return intersection;
}
void Inflate(const nsMargin& aMargin);
nsRegion Inflated(const nsMargin& aMargin) const {
nsRegion copy(*this);
copy.Inflate(aMargin);
return copy;
}
bool IsEmpty() const { return mBounds.IsEmpty(); }
bool IsComplex() const { return GetNumRects() > 1; }
bool IsEqual(const nsRegion& aRegion) const {
if (!mBounds.IsEqualInterior(aRegion.mBounds)) {
return false;
}
if (mBands.Length() != aRegion.mBands.Length()) {
return false;
}
for (auto iter1 = mBands.begin(), iter2 = aRegion.mBands.begin();
iter1 != mBands.end(); iter1++, iter2++) {
if (iter1->top != iter2->top || iter1->bottom != iter2->bottom ||
!iter1->EqualStrips(*iter2)) {
return false;
}
}
return true;
}
uint32_t GetNumRects() const {
if (mBands.IsEmpty()) {
return mBounds.IsEmpty() ? 0 : 1;
}
uint32_t rects = 0;
for (const Band& band : mBands) {
rects += band.mStrips.Length();
}
return rects;
}
const nsRect GetBounds() const { return mBounds.ToNSRect(); }
const nsRectAbsolute GetAbsoluteBounds() const { return mBounds; }
uint64_t Area() const;
/**
* Return this region scaled to a different appunits per pixel (APP) ratio.
* This applies nsRect::ScaleToOtherAppUnitsRoundOut/In to each rect of the
* region.
* @param aFromAPP the APP to scale from
* @param aToAPP the APP to scale to
* @note this can turn an empty region into a non-empty region
*/
[[nodiscard]] nsRegion ScaleToOtherAppUnitsRoundOut(int32_t aFromAPP,
int32_t aToAPP) const;
[[nodiscard]] nsRegion ScaleToOtherAppUnitsRoundIn(int32_t aFromAPP,
int32_t aToAPP) const;
nsRegion& ScaleRoundOut(float aXScale, float aYScale);
nsRegion& ScaleInverseRoundOut(float aXScale, float aYScale);
nsRegion& Transform(const mozilla::gfx::Matrix4x4& aTransform);
nsIntRegion ScaleToOutsidePixels(float aXScale, float aYScale,
nscoord aAppUnitsPerPixel) const;
nsIntRegion ScaleToInsidePixels(float aXScale, float aYScale,
nscoord aAppUnitsPerPixel) const;
nsIntRegion ScaleToNearestPixels(float aXScale, float aYScale,
nscoord aAppUnitsPerPixel) const;
nsIntRegion ToOutsidePixels(nscoord aAppUnitsPerPixel) const;
nsIntRegion ToNearestPixels(nscoord aAppUnitsPerPixel) const;
/**
* Gets the largest rectangle contained in the region.
* @param aContainingRect if non-empty, we choose a rectangle that
* maximizes the area intersecting with aContainingRect (and break ties by
* then choosing the largest rectangle overall)
*/
nsRect GetLargestRectangle(const nsRect& aContainingRect = nsRect()) const;
/**
* Make sure the region has at most aMaxRects by adding area to it
* if necessary. The simplified region will be a superset of the
* original region. The simplified region's bounding box will be
* the same as for the current region.
*/
void SimplifyOutward(uint32_t aMaxRects);
/**
* Simplify the region by adding at most aThreshold area between spans of
* rects. The simplified region will be a superset of the original region.
* The simplified region's bounding box will be the same as for the current
* region.
*/
void SimplifyOutwardByArea(uint32_t aThreshold);
/**
* Make sure the region has at most aMaxRects by removing area from
* it if necessary. The simplified region will be a subset of the
* original region.
*/
void SimplifyInward(uint32_t aMaxRects);
/**
* VisitEdges is a weird kind of function that we use for padding
* out surfaces to prevent texture filtering artifacts.
* It calls the visitFn callback for each of the exterior edges of
* the regions. The top and bottom edges will be expanded 1 pixel
* to the left and right if there's an outside corner. The order
* the edges are visited is not guaranteed.
*
* visitFn has a side parameter that can be TOP,BOTTOM,LEFT,RIGHT
* and specifies which kind of edge is being visited. x1, y1, x2, y2
* are the coordinates of the line. (x1 == x2) || (y1 == y2)
*/
typedef void (*visitFn)(void* closure, VisitSide side, int x1, int y1, int x2,
int y2);
void VisitEdges(visitFn, void* closure) const;
nsCString ToString() const;
static inline pixman_box32_t RectToBox(const nsRect& aRect) {
pixman_box32_t box = {aRect.X(), aRect.Y(), aRect.XMost(), aRect.YMost()};
return box;
}
static inline pixman_box32_t RectToBox(const mozilla::gfx::IntRect& aRect) {
pixman_box32_t box = {aRect.X(), aRect.Y(), aRect.XMost(), aRect.YMost()};
return box;
}
private:
nsIntRegion ToPixels(nscoord aAppUnitsPerPixel, bool aOutsidePixels) const;
nsRegion& Copy(const nsRegion& aRegion) {
mBounds = aRegion.mBounds;
mBands = aRegion.mBands.Clone();
return *this;
}
nsRegion& Copy(const nsRect& aRect) {
mBands.Clear();
mBounds = nsRectAbsolute::FromRect(aRect);
return *this;
}
nsRegion& Copy(const nsRectAbsolute& aRect) {
mBands.Clear();
mBounds = aRect;
return *this;
}
void EnsureSimplified() {
if (mBands.Length() == 1 && mBands.begin()->mStrips.Length() == 1) {
mBands.Clear();
}
}
static inline nsRectAbsolute BoxToRect(const pixman_box32_t& aBox) {
return nsRectAbsolute(aBox.x1, aBox.y1, aBox.x2, aBox.y2);
}
void AddRect(const nsRectAbsolute& aRect) {
#ifdef DEBUG_REGIONS
class OperationStringGeneratorAddRect : public OperationStringGenerator {
public:
OperationStringGeneratorAddRect(nsRegion& aRegion,
const nsRectAbsolute& aRect)
: mRegion(&aRegion), mRegionCopy(aRegion), mRect(aRect) {
aRegion.mCurrentOpGenerator = this;
}
virtual ~OperationStringGeneratorAddRect() {
mRegion->mCurrentOpGenerator = nullptr;
}
virtual void OutputOp() override {
std::stringstream stream;
mRegionCopy.OutputToStream("r", stream);
stream << "r.OrWith(nsRect(" << mRect.X() << ", " << mRect.Y() << ", "
<< mRect.Width() << ", " << mRect.Height() << "));\n";
gfxCriticalError() << stream.str();
}
private:
nsRegion* mRegion;
nsRegion mRegionCopy;
nsRectAbsolute mRect;
};
OperationStringGeneratorAddRect opGenerator(*this, aRect);
#endif
if (aRect.IsEmpty()) {
return;
}
if (mBands.IsEmpty()) {
if (mBounds.IsEmpty()) {
mBounds = aRect;
return;
} else if (mBounds.Contains(aRect)) {
return;
}
mBands.AppendElement(Band(mBounds));
}
mBounds = aRect.UnsafeUnion(mBounds);
size_t idx = 0;
Strip strip(aRect.X(), aRect.XMost());
Band remaining(aRect);
while (idx != mBands.Length()) {
if (mBands[idx].bottom <= remaining.top) {
// This band lies wholly above aRect.
idx++;
continue;
}
if (remaining.top >= remaining.bottom) {
AssertState();
EnsureSimplified();
return;
}
if (mBands[idx].top >= remaining.bottom) {
// This band lies wholly below aRect.
break;
}
if (mBands[idx].EqualStrips(remaining)) {
mBands[idx].top = std::min(mBands[idx].top, remaining.top);
// Nothing to do for this band. Just expand.
remaining.top = mBands[idx].bottom;
CompressBefore(idx);
idx++;
continue;
}
if (mBands[idx].top > remaining.top) {
auto before = mBands.InsertElementAt(idx, remaining);
before->bottom = mBands[idx + 1].top;
remaining.top = before->bottom;
CompressBefore(idx);
idx++;
CompressBefore(idx);
continue;
}
if (mBands[idx].ContainsStrip(strip)) {
remaining.top = mBands[idx].bottom;
idx++;
continue;
}
// mBands[idx].top <= remaining.top.
if (mBands[idx].top < remaining.top) {
auto before = mBands.InsertElementAt(idx, Band(mBands[idx]));
before->bottom = remaining.top;
idx++;
mBands[idx].top = remaining.top;
continue;
}
// mBands[idx].top == remaining.top
if (mBands[idx].bottom > remaining.bottom) {
auto below = mBands.InsertElementAt(idx + 1, Band(mBands[idx]));
below->top = remaining.bottom;
mBands[idx].bottom = remaining.bottom;
}
mBands[idx].InsertStrip(strip);
CompressBefore(idx);
remaining.top = mBands[idx].bottom;
idx++;
CompressBefore(idx);
}
if (remaining.top < remaining.bottom) {
// We didn't find any bands that overlapped aRect.
if (idx) {
if (mBands[idx - 1].bottom == remaining.top &&
mBands[idx - 1].EqualStrips(remaining)) {
mBands[idx - 1].bottom = remaining.bottom;
CompressBefore(idx);
AssertState();
EnsureSimplified();
return;
}
}
mBands.InsertElementAt(idx, remaining);
idx++;
CompressBefore(idx);
} else {
CompressBefore(idx);
}
AssertState();
EnsureSimplified();
}
// Most callers could probably do this on the fly, if this ever shows up
// in profiles we could optimize this.
nsRectAbsolute CalculateBounds() const {
if (mBands.IsEmpty()) {
return mBounds;
}
int32_t top = mBands.begin()->top;
int32_t bottom = mBands.LastElement().bottom;
int32_t leftMost = mBands.begin()->mStrips.begin()->left;
int32_t rightMost = mBands.begin()->mStrips.LastElement().right;
for (const Band& band : mBands) {
leftMost = std::min(leftMost, band.mStrips.begin()->left);
rightMost = std::max(rightMost, band.mStrips.LastElement().right);
}
return nsRectAbsolute(leftMost, top, rightMost, bottom);
}
static uint32_t ComputeMergedAreaIncrease(const Band& aTopBand,
const Band& aBottomBand);
// Returns true if idx is now referring to the 'next' band
bool CompressAdjacentBands(size_t& aIdx) {
if ((aIdx + 1) < mBands.Length()) {
if (mBands[aIdx + 1].top == mBands[aIdx].bottom &&
mBands[aIdx + 1].EqualStrips(mBands[aIdx])) {
mBands[aIdx].bottom = mBands[aIdx + 1].bottom;
mBands.RemoveElementAt(aIdx + 1);
}
}
if (aIdx) {
if (mBands[aIdx - 1].bottom == mBands[aIdx].top &&
mBands[aIdx].EqualStrips(mBands[aIdx - 1])) {
mBands[aIdx - 1].bottom = mBands[aIdx].bottom;
mBands.RemoveElementAt(aIdx);
return true;
}
}
return false;
}
void CompressBefore(size_t& aIdx) {
if (aIdx && aIdx < mBands.Length()) {
if (mBands[aIdx - 1].bottom == mBands[aIdx].top &&
mBands[aIdx - 1].EqualStrips(mBands[aIdx])) {
mBands[aIdx].top = mBands[aIdx - 1].top;
mBands.RemoveElementAt(aIdx - 1);
aIdx--;
}
}
}
BandArray mBands;
// Considering we only ever OR with nsRects, the bounds should fit in an
// nsRect as well.
nsRectAbsolute mBounds;
#ifdef DEBUG_REGIONS
friend class OperationStringGenerator;
OperationStringGenerator* mCurrentOpGenerator;
#endif
public:
class RectIterator {
const nsRegion& mRegion;
typename BandArray::const_iterator mCurrentBand;
typename StripArray::const_iterator mCurrentStrip;
public:
explicit RectIterator(const nsRegion& aRegion)
: mRegion(aRegion),
mCurrentBand(aRegion.mBands.begin())
#ifndef DEBUG
,
mCurrentStrip(nullptr)
#endif
{
mIsDone = mRegion.mBounds.IsEmpty();
if (mCurrentBand != aRegion.mBands.end()) {
mCurrentStrip = mCurrentBand->mStrips.begin();
}
}
bool Done() const { return mIsDone; }
const nsRect Get() const {
if (mRegion.mBands.IsEmpty()) {
return mRegion.GetBounds();
}
return nsRect(mCurrentStrip->left, mCurrentBand->top,
mCurrentStrip->right - mCurrentStrip->left,
mCurrentBand->bottom - mCurrentBand->top);
}
const nsRectAbsolute GetAbsolute() const {
if (mRegion.mBands.IsEmpty()) {
return mRegion.mBounds;
}
return nsRectAbsolute(mCurrentStrip->left, mCurrentBand->top,
mCurrentStrip->right, mCurrentBand->bottom);
}
void Next() {
if (mRegion.mBands.IsEmpty()) {
mIsDone = true;
return;
}
mCurrentStrip++;
if (mCurrentStrip == mCurrentBand->mStrips.end()) {
mCurrentBand++;
if (mCurrentBand != mRegion.mBands.end()) {
mCurrentStrip = mCurrentBand->mStrips.begin();
} else {
mIsDone = true;
}
}
}
bool mIsDone;
};
RectIterator RectIter() const { return RectIterator(*this); }
};
namespace mozilla {
namespace gfx {
/**
* BaseIntRegions use int32_t coordinates.
*/
template <typename Derived, typename Rect, typename Point, typename Margin>
class BaseIntRegion {
friend class ::nsRegion;
// Give access to all specializations of IntRegionTyped, not just ones that
// derive from this specialization of BaseIntRegion.
template <typename units>
friend class IntRegionTyped;
public:
typedef Rect RectType;
typedef Point PointType;
typedef Margin MarginType;
BaseIntRegion() = default;
MOZ_IMPLICIT BaseIntRegion(const Rect& aRect) : mImpl(ToRect(aRect)) {}
explicit BaseIntRegion(mozilla::gfx::ArrayView<pixman_box32_t> aRects)
: mImpl(aRects) {}
BaseIntRegion(const BaseIntRegion& aRegion) : mImpl(aRegion.mImpl) {}
BaseIntRegion(BaseIntRegion&& aRegion) : mImpl(std::move(aRegion.mImpl)) {}
Derived& operator=(const Rect& aRect) {
mImpl = ToRect(aRect);
return This();
}
Derived& operator=(const Derived& aRegion) {
mImpl = aRegion.mImpl;
return This();
}
Derived& operator=(Derived&& aRegion) {
mImpl = std::move(aRegion.mImpl);
return This();
}
bool operator==(const Derived& aRgn) const { return IsEqual(aRgn); }
bool operator!=(const Derived& aRgn) const { return !(*this == aRgn); }
friend std::ostream& operator<<(std::ostream& stream, const Derived& m) {
return stream << m.mImpl;
}
void AndWith(const Derived& aOther) { And(This(), aOther); }
void AndWith(const Rect& aOther) { And(This(), aOther); }
Derived& And(const Derived& aRgn1, const Derived& aRgn2) {
mImpl.And(aRgn1.mImpl, aRgn2.mImpl);
return This();
}
Derived& And(const Derived& aRegion, const Rect& aRect) {
mImpl.And(aRegion.mImpl, ToRect(aRect));
return This();
}
Derived& And(const Rect& aRect, const Derived& aRegion) {
return And(aRegion, aRect);
}
Derived& And(const Rect& aRect1, const Rect& aRect2) {
Rect TmpRect;
TmpRect.IntersectRect(aRect1, aRect2);
mImpl = ToRect(TmpRect);
return This();
}
Derived& OrWith(const Derived& aOther) { return Or(This(), aOther); }
Derived& OrWith(const Rect& aOther) { return Or(This(), aOther); }
Derived& Or(const Derived& aRgn1, const Derived& aRgn2) {
mImpl.Or(aRgn1.mImpl, aRgn2.mImpl);
return This();
}
Derived& Or(const Derived& aRegion, const Rect& aRect) {
mImpl.Or(aRegion.mImpl, ToRect(aRect));
return This();
}
Derived& Or(const Rect& aRect, const Derived& aRegion) {
return Or(aRegion, aRect);
}
Derived& Or(const Rect& aRect1, const Rect& aRect2) {
mImpl = ToRect(aRect1);
return Or(This(), aRect2);
}
Derived& XorWith(const Derived& aOther) { return Xor(This(), aOther); }
Derived& XorWith(const Rect& aOther) { return Xor(This(), aOther); }
Derived& Xor(const Derived& aRgn1, const Derived& aRgn2) {
mImpl.Xor(aRgn1.mImpl, aRgn2.mImpl);
return This();
}
Derived& Xor(const Derived& aRegion, const Rect& aRect) {
mImpl.Xor(aRegion.mImpl, ToRect(aRect));
return This();
}
Derived& Xor(const Rect& aRect, const Derived& aRegion) {
return Xor(aRegion, aRect);
}
Derived& Xor(const Rect& aRect1, const Rect& aRect2) {
mImpl = ToRect(aRect1);
return Xor(This(), aRect2);
}
Derived& SubOut(const Derived& aOther) { return Sub(This(), aOther); }
Derived& SubOut(const Rect& aOther) { return Sub(This(), aOther); }
Derived& Sub(const Derived& aRgn1, const Derived& aRgn2) {
mImpl.Sub(aRgn1.mImpl, aRgn2.mImpl);
return This();
}
Derived& Sub(const Derived& aRegion, const Rect& aRect) {
mImpl.Sub(aRegion.mImpl, ToRect(aRect));
return This();
}
Derived& Sub(const Rect& aRect, const Derived& aRegion) {
return Sub(Derived(aRect), aRegion);
}
Derived& Sub(const Rect& aRect1, const Rect& aRect2) {
mImpl = ToRect(aRect1);
return Sub(This(), aRect2);
}
/**
* Returns true iff the given point is inside the region. A region
* created from a rect (x=0, y=0, w=100, h=100) will NOT contain
* the point x=100, y=100.
*/
bool Contains(int aX, int aY) const { return mImpl.Contains(aX, aY); }
bool Contains(const Point& aPoint) const {
return mImpl.Contains(aPoint.x, aPoint.y);
}
bool Contains(const Rect& aRect) const {
return mImpl.Contains(ToRect(aRect));
}
bool Contains(const Derived& aRgn) const {
return mImpl.Contains(aRgn.mImpl);
}
bool Intersects(const Rect& aRect) const {
return mImpl.Intersects(ToRect(aRect));
}
void MoveBy(int32_t aXOffset, int32_t aYOffset) {
MoveBy(Point(aXOffset, aYOffset));
}
void MoveBy(Point aPt) { mImpl.MoveBy(aPt.X(), aPt.Y()); }
Derived MovedBy(int32_t aXOffset, int32_t aYOffset) const {
return MovedBy(Point(aXOffset, aYOffset));
}
Derived MovedBy(const Point& aPt) const {
Derived copy(This());
copy.MoveBy(aPt);
return copy;
}
Derived Intersect(const Derived& aOther) const {
Derived intersection;
intersection.And(This(), aOther);
return intersection;
}
void Inflate(const Margin& aMargin) {
mImpl.Inflate(
nsMargin(aMargin.top, aMargin.right, aMargin.bottom, aMargin.left));
}
Derived Inflated(const Margin& aMargin) const {
Derived copy(This());
copy.Inflate(aMargin);
return copy;
}
void SetEmpty() { mImpl.SetEmpty(); }
bool IsEmpty() const { return mImpl.IsEmpty(); }
bool IsComplex() const { return mImpl.IsComplex(); }
bool IsEqual(const Derived& aRegion) const {
return mImpl.IsEqual(aRegion.mImpl);
}
uint32_t GetNumRects() const { return mImpl.GetNumRects(); }
Rect GetBounds() const { return FromRect(mImpl.GetBounds()); }
uint64_t Area() const { return mImpl.Area(); }
nsRegion ToAppUnits(nscoord aAppUnitsPerPixel) const {
nsRegion result;
for (auto iter = RectIterator(*this); !iter.Done(); iter.Next()) {
nsRect appRect = ::ToAppUnits(iter.Get(), aAppUnitsPerPixel);
result.Or(result, appRect);
}
return result;
}
Rect GetLargestRectangle(const Rect& aContainingRect = Rect()) const {
return FromRect(mImpl.GetLargestRectangle(ToRect(aContainingRect)));
}
Derived& ScaleRoundOut(float aXScale, float aYScale) {
mImpl.ScaleRoundOut(aXScale, aYScale);
return This();
}
Derived& ScaleInverseRoundOut(float aXScale, float aYScale) {
mImpl.ScaleInverseRoundOut(aXScale, aYScale);
return This();
}
// Prefer using TransformBy(matrix, region) from UnitTransforms.h,
// as applying the transform should typically change the unit system.
// TODO(botond): Move this to IntRegionTyped and disable it for
// unit != UnknownUnits.
Derived& Transform(const mozilla::gfx::Matrix4x4& aTransform) {
mImpl.Transform(aTransform);
return This();
}
/**
* Make sure the region has at most aMaxRects by adding area to it
* if necessary. The simplified region will be a superset of the
* original region. The simplified region's bounding box will be
* the same as for the current region.
*/
void SimplifyOutward(uint32_t aMaxRects) { mImpl.SimplifyOutward(aMaxRects); }
void SimplifyOutwardByArea(uint32_t aThreshold) {
mImpl.SimplifyOutwardByArea(aThreshold);
}
/**
* Make sure the region has at most aMaxRects by removing area from
* it if necessary. The simplified region will be a subset of the
* original region.
*/
void SimplifyInward(uint32_t aMaxRects) { mImpl.SimplifyInward(aMaxRects); }
typedef void (*visitFn)(void* closure, VisitSide side, int x1, int y1, int x2,
int y2);
void VisitEdges(visitFn visit, void* closure) const {
mImpl.VisitEdges(visit, closure);
}
nsCString ToString() const { return mImpl.ToString(); }
class RectIterator {
nsRegion::RectIterator mImpl; // The underlying iterator.
mutable Rect mTmp; // The most recently gotten rectangle.
public:
explicit RectIterator(const BaseIntRegion& aRegion)
: mImpl(aRegion.mImpl) {}
bool Done() const { return mImpl.Done(); }
const Rect& Get() const {
mTmp = FromRect(mImpl.Get());
return mTmp;
}
void Next() { mImpl.Next(); }
};
RectIterator RectIter() const { return RectIterator(*this); }
protected:
// Expose enough to derived classes from them to define conversions
// between different types of BaseIntRegions.
explicit BaseIntRegion(const nsRegion& aImpl) : mImpl(aImpl) {}
const nsRegion& Impl() const { return mImpl; }
private:
nsRegion mImpl;
static nsRect ToRect(const Rect& aRect) {
return nsRect(aRect.X(), aRect.Y(), aRect.Width(), aRect.Height());
}
static Rect FromRect(const nsRect& aRect) {
return Rect(aRect.X(), aRect.Y(), aRect.Width(), aRect.Height());
}
Derived& This() { return *static_cast<Derived*>(this); }
const Derived& This() const { return *static_cast<const Derived*>(this); }
};
template <class units>
class IntRegionTyped
: public BaseIntRegion<IntRegionTyped<units>, IntRectTyped<units>,
IntPointTyped<units>, IntMarginTyped<units>> {
typedef BaseIntRegion<IntRegionTyped<units>, IntRectTyped<units>,
IntPointTyped<units>, IntMarginTyped<units>>
Super;
// Make other specializations of IntRegionTyped friends.
template <typename OtherUnits>
friend class IntRegionTyped;
static_assert(IsPixel<units>::value,
"'units' must be a coordinate system tag");
public:
typedef IntRectTyped<units> RectType;
typedef IntPointTyped<units> PointType;
typedef IntMarginTyped<units> MarginType;
// Forward constructors.
IntRegionTyped() = default;
MOZ_IMPLICIT IntRegionTyped(const IntRectTyped<units>& aRect)
: Super(aRect) {}
IntRegionTyped(const IntRegionTyped& aRegion) : Super(aRegion) {}
explicit IntRegionTyped(mozilla::gfx::ArrayView<pixman_box32_t> aRects)
: Super(aRects) {}
IntRegionTyped(IntRegionTyped&& aRegion) : Super(std::move(aRegion)) {}
// Assignment operators need to be forwarded as well, otherwise the compiler
// will declare deleted ones.
IntRegionTyped& operator=(const IntRegionTyped& aRegion) {
return Super::operator=(aRegion);
}
IntRegionTyped& operator=(IntRegionTyped&& aRegion) {
return Super::operator=(std::move(aRegion));
}
static IntRegionTyped FromUnknownRegion(const IntRegion& aRegion) {
return IntRegionTyped(aRegion.Impl());
}
IntRegion ToUnknownRegion() const {
// Need |this->| because Impl() is defined in a dependent base class.
return IntRegion(this->Impl());
}
private:
// This is deliberately private, so calling code uses FromUnknownRegion().
explicit IntRegionTyped(const nsRegion& aRegion) : Super(aRegion) {}
};
} // namespace gfx
} // namespace mozilla
typedef mozilla::gfx::IntRegion nsIntRegion;
#endif