Source code

Revision control

Copy as Markdown

Other Tools

//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/tree_util/IntermTraverse.h"
namespace sh
{
namespace
{
void OutputFunction(TInfoSinkBase &out, const char *str, const TFunction *func)
{
const char *internal =
(func->symbolType() == SymbolType::AngleInternal) ? " (internal function)" : "";
out << str << internal << ": " << func->name() << " (symbol id " << func->uniqueId().get()
<< ")";
}
// Two purposes:
// 1. Show an example of how to iterate tree. Functions can also directly call traverse() on
// children themselves to have finer grained control over the process than shown here, though
// that's not recommended if it can be avoided.
// 2. Print out a text based description of the tree.
// The traverser subclass is used to carry along data from node to node in the traversal.
class TOutputTraverser : public TIntermTraverser
{
public:
TOutputTraverser(TInfoSinkBase &out)
: TIntermTraverser(true, false, false), mOut(out), mIndentDepth(0)
{}
protected:
void visitSymbol(TIntermSymbol *) override;
void visitConstantUnion(TIntermConstantUnion *) override;
bool visitSwizzle(Visit visit, TIntermSwizzle *node) override;
bool visitBinary(Visit visit, TIntermBinary *) override;
bool visitUnary(Visit visit, TIntermUnary *) override;
bool visitTernary(Visit visit, TIntermTernary *node) override;
bool visitIfElse(Visit visit, TIntermIfElse *node) override;
bool visitSwitch(Visit visit, TIntermSwitch *node) override;
bool visitCase(Visit visit, TIntermCase *node) override;
void visitFunctionPrototype(TIntermFunctionPrototype *node) override;
bool visitFunctionDefinition(Visit visit, TIntermFunctionDefinition *node) override;
bool visitAggregate(Visit visit, TIntermAggregate *) override;
bool visitBlock(Visit visit, TIntermBlock *) override;
bool visitGlobalQualifierDeclaration(Visit visit,
TIntermGlobalQualifierDeclaration *node) override;
bool visitDeclaration(Visit visit, TIntermDeclaration *node) override;
bool visitLoop(Visit visit, TIntermLoop *) override;
bool visitBranch(Visit visit, TIntermBranch *) override;
int getCurrentIndentDepth() const { return mIndentDepth + getCurrentTraversalDepth(); }
TInfoSinkBase &mOut;
int mIndentDepth;
};
//
// Helper functions for printing, not part of traversing.
//
void OutputTreeText(TInfoSinkBase &out, TIntermNode *node, const int depth)
{
int i;
out.location(node->getLine().first_file, node->getLine().first_line);
for (i = 0; i < depth; ++i)
out << " ";
}
//
// The rest of the file are the traversal functions. The last one
// is the one that starts the traversal.
//
// Return true from interior nodes to have the external traversal
// continue on to children. If you process children yourself,
// return false.
//
void TOutputTraverser::visitSymbol(TIntermSymbol *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
if (node->variable().symbolType() == SymbolType::Empty)
{
mOut << "''";
}
else
{
mOut << "'" << node->getName() << "' ";
}
mOut << "(symbol id " << node->uniqueId().get() << ") ";
mOut << "(" << node->getType() << ")";
mOut << "\n";
}
bool TOutputTraverser::visitSwizzle(Visit visit, TIntermSwizzle *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "vector swizzle (";
node->writeOffsetsAsXYZW(&mOut);
mOut << ")";
mOut << " (" << node->getType() << ")";
mOut << "\n";
return true;
}
bool TOutputTraverser::visitBinary(Visit visit, TIntermBinary *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
switch (node->getOp())
{
case EOpComma:
mOut << "comma";
break;
case EOpAssign:
mOut << "move second child to first child";
break;
case EOpInitialize:
mOut << "initialize first child with second child";
break;
case EOpAddAssign:
mOut << "add second child into first child";
break;
case EOpSubAssign:
mOut << "subtract second child into first child";
break;
case EOpMulAssign:
mOut << "multiply second child into first child";
break;
case EOpVectorTimesMatrixAssign:
mOut << "matrix mult second child into first child";
break;
case EOpVectorTimesScalarAssign:
mOut << "vector scale second child into first child";
break;
case EOpMatrixTimesScalarAssign:
mOut << "matrix scale second child into first child";
break;
case EOpMatrixTimesMatrixAssign:
mOut << "matrix mult second child into first child";
break;
case EOpDivAssign:
mOut << "divide second child into first child";
break;
case EOpIModAssign:
mOut << "modulo second child into first child";
break;
case EOpBitShiftLeftAssign:
mOut << "bit-wise shift first child left by second child";
break;
case EOpBitShiftRightAssign:
mOut << "bit-wise shift first child right by second child";
break;
case EOpBitwiseAndAssign:
mOut << "bit-wise and second child into first child";
break;
case EOpBitwiseXorAssign:
mOut << "bit-wise xor second child into first child";
break;
case EOpBitwiseOrAssign:
mOut << "bit-wise or second child into first child";
break;
case EOpIndexDirect:
mOut << "direct index";
break;
case EOpIndexIndirect:
mOut << "indirect index";
break;
case EOpIndexDirectStruct:
mOut << "direct index for structure";
break;
case EOpIndexDirectInterfaceBlock:
mOut << "direct index for interface block";
break;
case EOpAdd:
mOut << "add";
break;
case EOpSub:
mOut << "subtract";
break;
case EOpMul:
mOut << "component-wise multiply";
break;
case EOpDiv:
mOut << "divide";
break;
case EOpIMod:
mOut << "modulo";
break;
case EOpBitShiftLeft:
mOut << "bit-wise shift left";
break;
case EOpBitShiftRight:
mOut << "bit-wise shift right";
break;
case EOpBitwiseAnd:
mOut << "bit-wise and";
break;
case EOpBitwiseXor:
mOut << "bit-wise xor";
break;
case EOpBitwiseOr:
mOut << "bit-wise or";
break;
case EOpEqual:
mOut << "Compare Equal";
break;
case EOpNotEqual:
mOut << "Compare Not Equal";
break;
case EOpLessThan:
mOut << "Compare Less Than";
break;
case EOpGreaterThan:
mOut << "Compare Greater Than";
break;
case EOpLessThanEqual:
mOut << "Compare Less Than or Equal";
break;
case EOpGreaterThanEqual:
mOut << "Compare Greater Than or Equal";
break;
case EOpVectorTimesScalar:
mOut << "vector-scale";
break;
case EOpVectorTimesMatrix:
mOut << "vector-times-matrix";
break;
case EOpMatrixTimesVector:
mOut << "matrix-times-vector";
break;
case EOpMatrixTimesScalar:
mOut << "matrix-scale";
break;
case EOpMatrixTimesMatrix:
mOut << "matrix-multiply";
break;
case EOpLogicalOr:
mOut << "logical-or";
break;
case EOpLogicalXor:
mOut << "logical-xor";
break;
case EOpLogicalAnd:
mOut << "logical-and";
break;
default:
mOut << "<unknown op>";
}
mOut << " (" << node->getType() << ")";
mOut << "\n";
// Special handling for direct indexes. Because constant
// unions are not aware they are struct indexes, treat them
// here where we have that contextual knowledge.
if (node->getOp() == EOpIndexDirectStruct || node->getOp() == EOpIndexDirectInterfaceBlock)
{
node->getLeft()->traverse(this);
TIntermConstantUnion *intermConstantUnion = node->getRight()->getAsConstantUnion();
ASSERT(intermConstantUnion);
OutputTreeText(mOut, intermConstantUnion, getCurrentIndentDepth() + 1);
// The following code finds the field name from the constant union
const TConstantUnion *constantUnion = intermConstantUnion->getConstantValue();
const TStructure *structure = node->getLeft()->getType().getStruct();
const TInterfaceBlock *interfaceBlock = node->getLeft()->getType().getInterfaceBlock();
ASSERT(structure || interfaceBlock);
const TFieldList &fields = structure ? structure->fields() : interfaceBlock->fields();
const TField *field = fields[constantUnion->getIConst()];
mOut << constantUnion->getIConst() << " (field '" << field->name() << "')";
mOut << "\n";
return false;
}
return true;
}
bool TOutputTraverser::visitUnary(Visit visit, TIntermUnary *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
const TOperator op = node->getOp();
switch (op)
{
// Give verbose names for ops that have special syntax and some built-in functions that are
// easy to confuse with others, but mostly use GLSL names for functions.
case EOpNegative:
mOut << "Negate value";
break;
case EOpPositive:
mOut << "Positive sign";
break;
case EOpLogicalNot:
mOut << "negation";
break;
case EOpBitwiseNot:
mOut << "bit-wise not";
break;
case EOpPostIncrement:
mOut << "Post-Increment";
break;
case EOpPostDecrement:
mOut << "Post-Decrement";
break;
case EOpPreIncrement:
mOut << "Pre-Increment";
break;
case EOpPreDecrement:
mOut << "Pre-Decrement";
break;
case EOpArrayLength:
mOut << "Array length";
break;
case EOpNotComponentWise:
mOut << "component-wise not";
break;
default:
if (BuiltInGroup::IsBuiltIn(op))
{
OutputFunction(mOut, "Call a built-in function", node->getFunction());
}
else
{
mOut << GetOperatorString(node->getOp());
}
break;
}
mOut << " (" << node->getType() << ")";
mOut << "\n";
return true;
}
bool TOutputTraverser::visitFunctionDefinition(Visit visit, TIntermFunctionDefinition *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Function Definition:\n";
return true;
}
bool TOutputTraverser::visitGlobalQualifierDeclaration(Visit visit,
TIntermGlobalQualifierDeclaration *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
if (node->isPrecise())
{
mOut << "Precise Declaration:\n";
}
else
{
mOut << "Invariant Declaration:\n";
}
return true;
}
void TOutputTraverser::visitFunctionPrototype(TIntermFunctionPrototype *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
OutputFunction(mOut, "Function Prototype", node->getFunction());
mOut << " (" << node->getType() << ")";
mOut << "\n";
size_t paramCount = node->getFunction()->getParamCount();
for (size_t i = 0; i < paramCount; ++i)
{
const TVariable *param = node->getFunction()->getParam(i);
OutputTreeText(mOut, node, getCurrentIndentDepth() + 1);
mOut << "parameter: " << param->name() << " (" << param->getType() << ")\n";
}
}
bool TOutputTraverser::visitAggregate(Visit visit, TIntermAggregate *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
const TOperator op = node->getOp();
if (op == EOpNull)
{
mOut.prefix(SH_ERROR);
mOut << "node is still EOpNull!\n";
return true;
}
// Give verbose names for some built-in functions that are easy to confuse with others, but
// mostly use GLSL names for functions.
switch (op)
{
case EOpCallFunctionInAST:
OutputFunction(mOut, "Call a user-defined function", node->getFunction());
break;
case EOpCallInternalRawFunction:
OutputFunction(mOut, "Call an internal function with raw implementation",
node->getFunction());
break;
case EOpConstruct:
// The type of the constructor will be printed below.
mOut << "Construct";
break;
case EOpEqualComponentWise:
mOut << "component-wise equal";
break;
case EOpNotEqualComponentWise:
mOut << "component-wise not equal";
break;
case EOpLessThanComponentWise:
mOut << "component-wise less than";
break;
case EOpGreaterThanComponentWise:
mOut << "component-wise greater than";
break;
case EOpLessThanEqualComponentWise:
mOut << "component-wise less than or equal";
break;
case EOpGreaterThanEqualComponentWise:
mOut << "component-wise greater than or equal";
break;
case EOpDot:
mOut << "dot product";
break;
case EOpCross:
mOut << "cross product";
break;
case EOpMatrixCompMult:
mOut << "component-wise multiply";
break;
default:
if (BuiltInGroup::IsBuiltIn(op))
{
OutputFunction(mOut, "Call a built-in function", node->getFunction());
}
else
{
mOut << GetOperatorString(node->getOp());
}
break;
}
mOut << " (" << node->getType() << ")";
mOut << "\n";
return true;
}
bool TOutputTraverser::visitBlock(Visit visit, TIntermBlock *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Code block\n";
return true;
}
bool TOutputTraverser::visitDeclaration(Visit visit, TIntermDeclaration *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Declaration\n";
return true;
}
bool TOutputTraverser::visitTernary(Visit visit, TIntermTernary *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Ternary selection";
mOut << " (" << node->getType() << ")\n";
++mIndentDepth;
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Condition\n";
node->getCondition()->traverse(this);
OutputTreeText(mOut, node, getCurrentIndentDepth());
if (node->getTrueExpression())
{
mOut << "true case\n";
node->getTrueExpression()->traverse(this);
}
if (node->getFalseExpression())
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "false case\n";
node->getFalseExpression()->traverse(this);
}
--mIndentDepth;
return false;
}
bool TOutputTraverser::visitIfElse(Visit visit, TIntermIfElse *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "If test\n";
++mIndentDepth;
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Condition\n";
node->getCondition()->traverse(this);
OutputTreeText(mOut, node, getCurrentIndentDepth());
if (node->getTrueBlock())
{
mOut << "true case\n";
node->getTrueBlock()->traverse(this);
}
else
{
mOut << "true case is null\n";
}
if (node->getFalseBlock())
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "false case\n";
node->getFalseBlock()->traverse(this);
}
--mIndentDepth;
return false;
}
bool TOutputTraverser::visitSwitch(Visit visit, TIntermSwitch *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Switch\n";
return true;
}
bool TOutputTraverser::visitCase(Visit visit, TIntermCase *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
if (node->getCondition() == nullptr)
{
mOut << "Default\n";
}
else
{
mOut << "Case\n";
}
return true;
}
void TOutputTraverser::visitConstantUnion(TIntermConstantUnion *node)
{
size_t size = node->getType().getObjectSize();
for (size_t i = 0; i < size; i++)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
switch (node->getConstantValue()[i].getType())
{
case EbtBool:
if (node->getConstantValue()[i].getBConst())
mOut << "true";
else
mOut << "false";
mOut << " ("
<< "const bool"
<< ")";
mOut << "\n";
break;
case EbtFloat:
mOut << node->getConstantValue()[i].getFConst();
mOut << " (const float)\n";
break;
case EbtInt:
mOut << node->getConstantValue()[i].getIConst();
mOut << " (const int)\n";
break;
case EbtUInt:
mOut << node->getConstantValue()[i].getUConst();
mOut << " (const uint)\n";
break;
case EbtYuvCscStandardEXT:
mOut << getYuvCscStandardEXTString(
node->getConstantValue()[i].getYuvCscStandardEXTConst());
mOut << " (const yuvCscStandardEXT)\n";
break;
default:
mOut.prefix(SH_ERROR);
mOut << "Unknown constant\n";
break;
}
}
}
bool TOutputTraverser::visitLoop(Visit visit, TIntermLoop *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Loop with condition ";
if (node->getType() == ELoopDoWhile)
mOut << "not ";
mOut << "tested first\n";
++mIndentDepth;
OutputTreeText(mOut, node, getCurrentIndentDepth());
if (node->getCondition())
{
mOut << "Loop Condition\n";
node->getCondition()->traverse(this);
}
else
{
mOut << "No loop condition\n";
}
OutputTreeText(mOut, node, getCurrentIndentDepth());
if (node->getBody())
{
mOut << "Loop Body\n";
node->getBody()->traverse(this);
}
else
{
mOut << "No loop body\n";
}
if (node->getExpression())
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
mOut << "Loop Terminal Expression\n";
node->getExpression()->traverse(this);
}
--mIndentDepth;
return false;
}
bool TOutputTraverser::visitBranch(Visit visit, TIntermBranch *node)
{
OutputTreeText(mOut, node, getCurrentIndentDepth());
switch (node->getFlowOp())
{
case EOpKill:
mOut << "Branch: Kill";
break;
case EOpBreak:
mOut << "Branch: Break";
break;
case EOpContinue:
mOut << "Branch: Continue";
break;
case EOpReturn:
mOut << "Branch: Return";
break;
default:
mOut << "Branch: Unknown Branch";
break;
}
if (node->getExpression())
{
mOut << " with expression\n";
++mIndentDepth;
node->getExpression()->traverse(this);
--mIndentDepth;
}
else
{
mOut << "\n";
}
return false;
}
} // anonymous namespace
void OutputTree(TIntermNode *root, TInfoSinkBase &out)
{
TOutputTraverser it(out);
ASSERT(root);
root->traverse(&it);
}
} // namespace sh