Source code

Revision control

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsError.h"
#include "MediaResource.h"
#ifdef MOZ_AV1
# include "AOMDecoder.h"
#endif
#include "OpusDecoder.h"
#include "VPXDecoder.h"
#include "WebMDemuxer.h"
#include "WebMBufferedParser.h"
#include "gfx2DGlue.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/SharedThreadPool.h"
#include "MediaDataDemuxer.h"
#include "nsAutoRef.h"
#include "NesteggPacketHolder.h"
#include "XiphExtradata.h"
#include "prprf.h" // leaving it for PR_vsnprintf()
#include "mozilla/IntegerPrintfMacros.h"
#include "mozilla/Sprintf.h"
#include <algorithm>
#include <numeric>
#include <stdint.h>
#define WEBM_DEBUG(arg, ...) \
DDMOZ_LOG(gMediaDemuxerLog, mozilla::LogLevel::Debug, "::%s: " arg, \
__func__, ##__VA_ARGS__)
extern mozilla::LazyLogModule gMediaDemuxerLog;
namespace mozilla {
using namespace gfx;
using media::TimeUnit;
LazyLogModule gNesteggLog("Nestegg");
// How far ahead will we look when searching future keyframe. In microseconds.
// This value is based on what appears to be a reasonable value as most webm
// files encountered appear to have keyframes located < 4s.
#define MAX_LOOK_AHEAD 10000000
// Functions for reading and seeking using WebMDemuxer required for
// nestegg_io. The 'user data' passed to these functions is the
// demuxer.
static int webmdemux_read(void* aBuffer, size_t aLength, void* aUserData) {
MOZ_ASSERT(aUserData);
MOZ_ASSERT(aLength < UINT32_MAX);
WebMDemuxer::NestEggContext* context =
reinterpret_cast<WebMDemuxer::NestEggContext*>(aUserData);
uint32_t count = aLength;
if (context->IsMediaSource()) {
int64_t length = context->GetEndDataOffset();
int64_t position = context->GetResource()->Tell();
MOZ_ASSERT(position <= context->GetResource()->GetLength());
MOZ_ASSERT(position <= length);
if (length >= 0 && count + position > length) {
count = length - position;
}
MOZ_ASSERT(count <= aLength);
}
uint32_t bytes = 0;
nsresult rv =
context->GetResource()->Read(static_cast<char*>(aBuffer), count, &bytes);
bool eof = bytes < aLength;
return NS_FAILED(rv) ? -1 : eof ? 0 : 1;
}
static int webmdemux_seek(int64_t aOffset, int aWhence, void* aUserData) {
MOZ_ASSERT(aUserData);
WebMDemuxer::NestEggContext* context =
reinterpret_cast<WebMDemuxer::NestEggContext*>(aUserData);
nsresult rv = context->GetResource()->Seek(aWhence, aOffset);
return NS_SUCCEEDED(rv) ? 0 : -1;
}
static int64_t webmdemux_tell(void* aUserData) {
MOZ_ASSERT(aUserData);
WebMDemuxer::NestEggContext* context =
reinterpret_cast<WebMDemuxer::NestEggContext*>(aUserData);
return context->GetResource()->Tell();
}
static void webmdemux_log(nestegg* aContext, unsigned int aSeverity,
char const* aFormat, ...) {
if (!MOZ_LOG_TEST(gNesteggLog, LogLevel::Debug)) {
return;
}
va_list args;
char msg[256];
const char* sevStr;
switch (aSeverity) {
case NESTEGG_LOG_DEBUG:
sevStr = "DBG";
break;
case NESTEGG_LOG_INFO:
sevStr = "INF";
break;
case NESTEGG_LOG_WARNING:
sevStr = "WRN";
break;
case NESTEGG_LOG_ERROR:
sevStr = "ERR";
break;
case NESTEGG_LOG_CRITICAL:
sevStr = "CRT";
break;
default:
sevStr = "UNK";
break;
}
va_start(args, aFormat);
SprintfLiteral(msg, "%p [Nestegg-%s] ", aContext, sevStr);
PR_vsnprintf(msg + strlen(msg), sizeof(msg) - strlen(msg), aFormat, args);
MOZ_LOG(gNesteggLog, LogLevel::Debug, ("%s", msg));
va_end(args);
}
WebMDemuxer::NestEggContext::~NestEggContext() {
if (mContext) {
nestegg_destroy(mContext);
}
}
int WebMDemuxer::NestEggContext::Init() {
nestegg_io io;
io.read = webmdemux_read;
io.seek = webmdemux_seek;
io.tell = webmdemux_tell;
io.userdata = this;
// While reading the metadata, we do not really care about which nestegg
// context is being used so long that they are both initialised.
// For reading the metadata however, we will use mVideoContext.
return nestegg_init(&mContext, io, &webmdemux_log,
mParent->IsMediaSource() ? mResource.GetLength() : -1);
}
WebMDemuxer::WebMDemuxer(MediaResource* aResource)
: WebMDemuxer(aResource, false) {}
WebMDemuxer::WebMDemuxer(MediaResource* aResource, bool aIsMediaSource)
: mVideoContext(this, aResource),
mAudioContext(this, aResource),
mBufferedState(nullptr),
mInitData(nullptr),
mVideoTrack(0),
mAudioTrack(0),
mSeekPreroll(0),
mAudioCodec(-1),
mVideoCodec(-1),
mHasVideo(false),
mHasAudio(false),
mNeedReIndex(true),
mLastWebMBlockOffset(-1),
mIsMediaSource(aIsMediaSource) {
DDLINKCHILD("resource", aResource);
// Audio/video contexts hold a MediaResourceIndex.
DDLINKCHILD("video context", mVideoContext.GetResource());
DDLINKCHILD("audio context", mAudioContext.GetResource());
}
WebMDemuxer::~WebMDemuxer() {
Reset(TrackInfo::kVideoTrack);
Reset(TrackInfo::kAudioTrack);
}
RefPtr<WebMDemuxer::InitPromise> WebMDemuxer::Init() {
InitBufferedState();
if (NS_FAILED(ReadMetadata())) {
return InitPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_METADATA_ERR,
__func__);
}
if (!GetNumberTracks(TrackInfo::kAudioTrack) &&
!GetNumberTracks(TrackInfo::kVideoTrack)) {
return InitPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_METADATA_ERR,
__func__);
}
return InitPromise::CreateAndResolve(NS_OK, __func__);
}
void WebMDemuxer::InitBufferedState() {
MOZ_ASSERT(!mBufferedState);
mBufferedState = new WebMBufferedState;
}
uint32_t WebMDemuxer::GetNumberTracks(TrackInfo::TrackType aType) const {
switch (aType) {
case TrackInfo::kAudioTrack:
return mHasAudio ? 1 : 0;
case TrackInfo::kVideoTrack:
return mHasVideo ? 1 : 0;
default:
return 0;
}
}
UniquePtr<TrackInfo> WebMDemuxer::GetTrackInfo(TrackInfo::TrackType aType,
size_t aTrackNumber) const {
switch (aType) {
case TrackInfo::kAudioTrack:
return mInfo.mAudio.Clone();
case TrackInfo::kVideoTrack:
return mInfo.mVideo.Clone();
default:
return nullptr;
}
}
already_AddRefed<MediaTrackDemuxer> WebMDemuxer::GetTrackDemuxer(
TrackInfo::TrackType aType, uint32_t aTrackNumber) {
if (GetNumberTracks(aType) <= aTrackNumber) {
return nullptr;
}
RefPtr<WebMTrackDemuxer> e = new WebMTrackDemuxer(this, aType, aTrackNumber);
DDLINKCHILD("track demuxer", e.get());
mDemuxers.AppendElement(e);
return e.forget();
}
void WebMDemuxer::Reset(TrackInfo::TrackType aType) {
if (aType == TrackInfo::kVideoTrack) {
mVideoPackets.Reset();
} else {
mAudioPackets.Reset();
}
}
nsresult WebMDemuxer::ReadMetadata() {
int r = mVideoContext.Init();
if (r == -1) {
return NS_ERROR_FAILURE;
}
if (mAudioContext.Init() == -1) {
return NS_ERROR_FAILURE;
}
// For reading the metadata we can only use the video resource/context.
MediaResourceIndex& resource = Resource(TrackInfo::kVideoTrack);
nestegg* context = Context(TrackInfo::kVideoTrack);
{
// Check how much data nestegg read and force feed it to BufferedState.
RefPtr<MediaByteBuffer> buffer = resource.MediaReadAt(0, resource.Tell());
if (!buffer) {
return NS_ERROR_FAILURE;
}
mBufferedState->NotifyDataArrived(buffer->Elements(), buffer->Length(), 0);
if (mBufferedState->GetInitEndOffset() < 0) {
return NS_ERROR_FAILURE;
}
MOZ_ASSERT(mBufferedState->GetInitEndOffset() <= resource.Tell());
}
mInitData = resource.MediaReadAt(0, mBufferedState->GetInitEndOffset());
if (!mInitData ||
mInitData->Length() != size_t(mBufferedState->GetInitEndOffset())) {
return NS_ERROR_FAILURE;
}
unsigned int ntracks = 0;
r = nestegg_track_count(context, &ntracks);
if (r == -1) {
return NS_ERROR_FAILURE;
}
for (unsigned int track = 0; track < ntracks; ++track) {
int id = nestegg_track_codec_id(context, track);
if (id == -1) {
return NS_ERROR_FAILURE;
}
int type = nestegg_track_type(context, track);
if (type == NESTEGG_TRACK_VIDEO && !mHasVideo) {
nestegg_video_params params;
r = nestegg_track_video_params(context, track, &params);
if (r == -1) {
return NS_ERROR_FAILURE;
}
mVideoCodec = nestegg_track_codec_id(context, track);
switch (mVideoCodec) {
case NESTEGG_CODEC_VP8:
mInfo.mVideo.mMimeType = "video/vp8";
break;
case NESTEGG_CODEC_VP9:
mInfo.mVideo.mMimeType = "video/vp9";
break;
case NESTEGG_CODEC_AV1:
mInfo.mVideo.mMimeType = "video/av1";
break;
default:
NS_WARNING("Unknown WebM video codec");
return NS_ERROR_FAILURE;
}
// Picture region, taking into account cropping, before scaling
// to the display size.
unsigned int cropH = params.crop_right + params.crop_left;
unsigned int cropV = params.crop_bottom + params.crop_top;
gfx::IntRect pictureRect(params.crop_left, params.crop_top,
params.width - cropH, params.height - cropV);
// If the cropping data appears invalid then use the frame data
if (pictureRect.width <= 0 || pictureRect.height <= 0 ||
pictureRect.x < 0 || pictureRect.y < 0) {
pictureRect.x = 0;
pictureRect.y = 0;
pictureRect.width = params.width;
pictureRect.height = params.height;
}
// Validate the container-reported frame and pictureRect sizes. This
// ensures that our video frame creation code doesn't overflow.
gfx::IntSize displaySize(params.display_width, params.display_height);
gfx::IntSize frameSize(params.width, params.height);
if (!IsValidVideoRegion(frameSize, pictureRect, displaySize)) {
// Video track's frame sizes will overflow. Ignore the video track.
continue;
}
mVideoTrack = track;
mHasVideo = true;
mInfo.mVideo.mDisplay = displaySize;
mInfo.mVideo.mImage = frameSize;
mInfo.mVideo.SetImageRect(pictureRect);
mInfo.mVideo.SetAlpha(params.alpha_mode);
switch (params.stereo_mode) {
case NESTEGG_VIDEO_MONO:
mInfo.mVideo.mStereoMode = StereoMode::MONO;
break;
case NESTEGG_VIDEO_STEREO_LEFT_RIGHT:
mInfo.mVideo.mStereoMode = StereoMode::LEFT_RIGHT;
break;
case NESTEGG_VIDEO_STEREO_BOTTOM_TOP:
mInfo.mVideo.mStereoMode = StereoMode::BOTTOM_TOP;
break;
case NESTEGG_VIDEO_STEREO_TOP_BOTTOM:
mInfo.mVideo.mStereoMode = StereoMode::TOP_BOTTOM;
break;
case NESTEGG_VIDEO_STEREO_RIGHT_LEFT:
mInfo.mVideo.mStereoMode = StereoMode::RIGHT_LEFT;
break;
}
uint64_t duration = 0;
r = nestegg_duration(context, &duration);
if (!r) {
mInfo.mVideo.mDuration = TimeUnit::FromNanoseconds(duration);
}
mInfo.mVideo.mCrypto = GetTrackCrypto(TrackInfo::kVideoTrack, track);
if (mInfo.mVideo.mCrypto.IsEncrypted()) {
MOZ_ASSERT(mInfo.mVideo.mCrypto.mCryptoScheme == CryptoScheme::Cenc,
"WebM should only use cenc scheme");
mCrypto.AddInitData(u"webm"_ns, mInfo.mVideo.mCrypto.mKeyId);
}
} else if (type == NESTEGG_TRACK_AUDIO && !mHasAudio) {
nestegg_audio_params params;
r = nestegg_track_audio_params(context, track, &params);
if (r == -1) {
return NS_ERROR_FAILURE;
}
if (params.rate > AudioInfo::MAX_RATE ||
params.channels > AudioConfig::ChannelLayout::MAX_CHANNELS) {
return NS_ERROR_DOM_MEDIA_METADATA_ERR;
}
mAudioTrack = track;
mHasAudio = true;
mAudioCodec = nestegg_track_codec_id(context, track);
if (mAudioCodec == NESTEGG_CODEC_VORBIS) {
mInfo.mAudio.mMimeType = "audio/vorbis";
} else if (mAudioCodec == NESTEGG_CODEC_OPUS) {
mInfo.mAudio.mMimeType = "audio/opus";
OpusDataDecoder::AppendCodecDelay(
mInfo.mAudio.mCodecSpecificConfig,
TimeUnit::FromNanoseconds(params.codec_delay).ToMicroseconds());
}
mSeekPreroll = params.seek_preroll;
mInfo.mAudio.mRate = params.rate;
mInfo.mAudio.mChannels = params.channels;
unsigned int nheaders = 0;
r = nestegg_track_codec_data_count(context, track, &nheaders);
if (r == -1) {
return NS_ERROR_FAILURE;
}
AutoTArray<const unsigned char*, 4> headers;
AutoTArray<size_t, 4> headerLens;
for (uint32_t header = 0; header < nheaders; ++header) {
unsigned char* data = 0;
size_t length = 0;
r = nestegg_track_codec_data(context, track, header, &data, &length);
if (r == -1) {
return NS_ERROR_FAILURE;
}
headers.AppendElement(data);
headerLens.AppendElement(length);
}
// Vorbis has 3 headers, convert to Xiph extradata format to send them to
// the demuxer.
// TODO: This is already the format WebM stores them in. Would be nice
// to avoid having libnestegg split them only for us to pack them again,
// but libnestegg does not give us an API to access this data directly.
if (nheaders > 1) {
if (!XiphHeadersToExtradata(mInfo.mAudio.mCodecSpecificConfig, headers,
headerLens)) {
return NS_ERROR_FAILURE;
}
} else {
mInfo.mAudio.mCodecSpecificConfig->AppendElements(headers[0],
headerLens[0]);
}
uint64_t duration = 0;
r = nestegg_duration(context, &duration);
if (!r) {
mInfo.mAudio.mDuration = TimeUnit::FromNanoseconds(duration);
}
mInfo.mAudio.mCrypto = GetTrackCrypto(TrackInfo::kAudioTrack, track);
if (mInfo.mAudio.mCrypto.IsEncrypted()) {
MOZ_ASSERT(mInfo.mAudio.mCrypto.mCryptoScheme == CryptoScheme::Cenc,
"WebM should only use cenc scheme");
mCrypto.AddInitData(u"webm"_ns, mInfo.mAudio.mCrypto.mKeyId);
}
}
}
return NS_OK;
}
bool WebMDemuxer::IsSeekable() const {
return Context(TrackInfo::kVideoTrack) &&
nestegg_has_cues(Context(TrackInfo::kVideoTrack));
}
bool WebMDemuxer::IsSeekableOnlyInBufferedRanges() const {
return Context(TrackInfo::kVideoTrack) &&
!nestegg_has_cues(Context(TrackInfo::kVideoTrack));
}
void WebMDemuxer::EnsureUpToDateIndex() {
if (!mNeedReIndex || !mInitData) {
return;
}
AutoPinned<MediaResource> resource(
Resource(TrackInfo::kVideoTrack).GetResource());
MediaByteRangeSet byteRanges;
nsresult rv = resource->GetCachedRanges(byteRanges);
if (NS_FAILED(rv) || byteRanges.IsEmpty()) {
return;
}
mBufferedState->UpdateIndex(byteRanges, resource);
mNeedReIndex = false;
if (!mIsMediaSource) {
return;
}
mLastWebMBlockOffset = mBufferedState->GetLastBlockOffset();
MOZ_ASSERT(mLastWebMBlockOffset <= resource->GetLength());
}
void WebMDemuxer::NotifyDataArrived() {
WEBM_DEBUG("");
mNeedReIndex = true;
}
void WebMDemuxer::NotifyDataRemoved() {
mBufferedState->Reset();
if (mInitData) {
mBufferedState->NotifyDataArrived(mInitData->Elements(),
mInitData->Length(), 0);
}
mNeedReIndex = true;
}
UniquePtr<EncryptionInfo> WebMDemuxer::GetCrypto() {
return mCrypto.IsEncrypted() ? MakeUnique<EncryptionInfo>(mCrypto) : nullptr;
}
CryptoTrack WebMDemuxer::GetTrackCrypto(TrackInfo::TrackType aType,
size_t aTrackNumber) {
const int WEBM_IV_SIZE = 16;
const unsigned char* contentEncKeyId;
size_t contentEncKeyIdLength;
CryptoTrack crypto;
nestegg* context = Context(aType);
int r = nestegg_track_content_enc_key_id(
context, aTrackNumber, &contentEncKeyId, &contentEncKeyIdLength);
if (r == -1) {
WEBM_DEBUG("nestegg_track_content_enc_key_id failed r=%d", r);
return crypto;
}
uint32_t i;
nsTArray<uint8_t> initData;
for (i = 0; i < contentEncKeyIdLength; i++) {
initData.AppendElement(contentEncKeyId[i]);
}
if (!initData.IsEmpty()) {
// Webm only uses a cenc style scheme.
crypto.mCryptoScheme = CryptoScheme::Cenc;
crypto.mIVSize = WEBM_IV_SIZE;
crypto.mKeyId = std::move(initData);
}
return crypto;
}
nsresult WebMDemuxer::GetNextPacket(TrackInfo::TrackType aType,
MediaRawDataQueue* aSamples) {
if (mIsMediaSource) {
// To ensure mLastWebMBlockOffset is properly up to date.
EnsureUpToDateIndex();
}
RefPtr<NesteggPacketHolder> holder;
nsresult rv = NextPacket(aType, holder);
if (NS_FAILED(rv)) {
return rv;
}
int r = 0;
unsigned int count = 0;
r = nestegg_packet_count(holder->Packet(), &count);
if (r == -1) {
return NS_ERROR_DOM_MEDIA_DEMUXER_ERR;
}
int64_t tstamp = holder->Timestamp();
int64_t duration = holder->Duration();
// The end time of this frame is the start time of the next frame. Fetch
// the timestamp of the next packet for this track. If we've reached the
// end of the resource, use the file's duration as the end time of this
// video frame.
RefPtr<NesteggPacketHolder> next_holder;
rv = NextPacket(aType, next_holder);
if (NS_FAILED(rv) && rv != NS_ERROR_DOM_MEDIA_END_OF_STREAM) {
return rv;
}
int64_t next_tstamp = INT64_MIN;
auto calculateNextTimestamp = [&](auto&& pushPacket, auto&& lastFrameTime,
int64_t trackEndTime) {
if (next_holder) {
next_tstamp = next_holder->Timestamp();
(this->*pushPacket)(next_holder);
} else if (duration >= 0) {
next_tstamp = tstamp + duration;
} else if (lastFrameTime.isSome()) {
next_tstamp = tstamp + (tstamp - lastFrameTime.ref());
} else if (mIsMediaSource) {
(this->*pushPacket)(holder);
} else {
// If we can't get frame's duration, it means either we need to wait for
// more data for MSE case or this is the last frame for file resource
// case.
if (tstamp > trackEndTime) {
// This shouldn't happen, but some muxers give incorrect durations to
// segments, then have samples appear beyond those durations.
WEBM_DEBUG("Found tstamp=%" PRIi64 " > trackEndTime=%" PRIi64
" while calculating next timestamp! Indicates a bad mux! "
"Will use tstamp value.",
tstamp, trackEndTime);
}
next_tstamp = std::max<int64_t>(tstamp, trackEndTime);
}
lastFrameTime = Some(tstamp);
};
if (aType == TrackInfo::kAudioTrack) {
calculateNextTimestamp(&WebMDemuxer::PushAudioPacket, mLastAudioFrameTime,
mInfo.mAudio.mDuration.ToMicroseconds());
} else {
calculateNextTimestamp(&WebMDemuxer::PushVideoPacket, mLastVideoFrameTime,
mInfo.mVideo.mDuration.ToMicroseconds());
}
if (mIsMediaSource && next_tstamp == INT64_MIN) {
return NS_ERROR_DOM_MEDIA_END_OF_STREAM;
}
int64_t discardPadding = 0;
if (aType == TrackInfo::kAudioTrack) {
(void)nestegg_packet_discard_padding(holder->Packet(), &discardPadding);
}
int packetEncryption = nestegg_packet_encryption(holder->Packet());
for (uint32_t i = 0; i < count; ++i) {
unsigned char* data = nullptr;
size_t length;
r = nestegg_packet_data(holder->Packet(), i, &data, &length);
if (r == -1) {
WEBM_DEBUG("nestegg_packet_data failed r=%d", r);
return NS_ERROR_DOM_MEDIA_DEMUXER_ERR;
}
unsigned char* alphaData = nullptr;
size_t alphaLength = 0;
// Check packets for alpha information if file has declared alpha frames
// may be present.
if (mInfo.mVideo.HasAlpha()) {
r = nestegg_packet_additional_data(holder->Packet(), 1, &alphaData,
&alphaLength);
if (r == -1) {
WEBM_DEBUG(
"nestegg_packet_additional_data failed to retrieve alpha data r=%d",
r);
}
}
bool isKeyframe = false;
if (aType == TrackInfo::kAudioTrack) {
isKeyframe = true;
} else if (aType == TrackInfo::kVideoTrack) {
if (packetEncryption == NESTEGG_PACKET_HAS_SIGNAL_BYTE_ENCRYPTED ||
packetEncryption == NESTEGG_PACKET_HAS_SIGNAL_BYTE_PARTITIONED) {
// Packet is encrypted, can't peek, use packet info
isKeyframe = nestegg_packet_has_keyframe(holder->Packet()) ==
NESTEGG_PACKET_HAS_KEYFRAME_TRUE;
} else {
MOZ_ASSERT(
packetEncryption == NESTEGG_PACKET_HAS_SIGNAL_BYTE_UNENCRYPTED ||
packetEncryption == NESTEGG_PACKET_HAS_SIGNAL_BYTE_FALSE,
"Unencrypted packet expected");
auto sample = Span(data, length);
auto alphaSample = Span(alphaData, alphaLength);
switch (mVideoCodec) {
case NESTEGG_CODEC_VP8:
isKeyframe = VPXDecoder::IsKeyframe(sample, VPXDecoder::Codec::VP8);
if (isKeyframe && alphaLength) {
isKeyframe =
VPXDecoder::IsKeyframe(alphaSample, VPXDecoder::Codec::VP8);
}
break;
case NESTEGG_CODEC_VP9:
isKeyframe = VPXDecoder::IsKeyframe(sample, VPXDecoder::Codec::VP9);
if (isKeyframe && alphaLength) {
isKeyframe =
VPXDecoder::IsKeyframe(alphaSample, VPXDecoder::Codec::VP9);
}
break;
#ifdef MOZ_AV1
case NESTEGG_CODEC_AV1:
isKeyframe = AOMDecoder::IsKeyframe(sample);
if (isKeyframe && alphaLength) {
isKeyframe = AOMDecoder::IsKeyframe(alphaSample);
}
break;
#endif
default:
NS_WARNING("Cannot detect keyframes in unknown WebM video codec");
return NS_ERROR_FAILURE;
}
}
}
WEBM_DEBUG("push sample tstamp: %" PRId64 " next_tstamp: %" PRId64
" length: %zu kf: %d",
tstamp, next_tstamp, length, isKeyframe);
RefPtr<MediaRawData> sample;
if (mInfo.mVideo.HasAlpha() && alphaLength != 0) {
sample = new MediaRawData(data, length, alphaData, alphaLength);
if ((length && !sample->Data()) ||
(alphaLength && !sample->AlphaData())) {
// OOM.
return NS_ERROR_OUT_OF_MEMORY;
}
} else {
sample = new MediaRawData(data, length);
if (length && !sample->Data()) {
// OOM.
return NS_ERROR_OUT_OF_MEMORY;
}
}
sample->mTimecode = TimeUnit::FromMicroseconds(tstamp);
sample->mTime = TimeUnit::FromMicroseconds(tstamp);
if (next_tstamp > tstamp) {
sample->mDuration = TimeUnit::FromMicroseconds(next_tstamp - tstamp);
}
sample->mOffset = holder->Offset();
sample->mKeyframe = isKeyframe;
if (discardPadding && i == count - 1) {
CheckedInt64 discardFrames;
if (discardPadding < 0) {
// This is an invalid value as discard padding should never be negative.
// Set to maximum value so that the decoder will reject it as it's
// greater than the number of frames available.
discardFrames = INT32_MAX;
WEBM_DEBUG("Invalid negative discard padding");
} else {
discardFrames = TimeUnitToFrames(
TimeUnit::FromNanoseconds(discardPadding), mInfo.mAudio.mRate);
}
if (discardFrames.isValid()) {
sample->mDiscardPadding = discardFrames.value();
}
}
if (packetEncryption == NESTEGG_PACKET_HAS_SIGNAL_BYTE_ENCRYPTED ||
packetEncryption == NESTEGG_PACKET_HAS_SIGNAL_BYTE_PARTITIONED) {
UniquePtr<MediaRawDataWriter> writer(sample->CreateWriter());
unsigned char const* iv;
size_t ivLength;
nestegg_packet_iv(holder->Packet(), &iv, &ivLength);
writer->mCrypto.mCryptoScheme = CryptoScheme::Cenc;
writer->mCrypto.mIVSize = ivLength;
if (ivLength == 0) {
// Frame is not encrypted. This shouldn't happen as it means the
// encryption bit is set on a frame with no IV, but we gracefully
// handle incase.
MOZ_ASSERT_UNREACHABLE(
"Unencrypted packets should not have the encryption bit set!");
WEBM_DEBUG("Unencrypted packet with encryption bit set");
writer->mCrypto.mPlainSizes.AppendElement(length);
writer->mCrypto.mEncryptedSizes.AppendElement(0);
} else {
// Frame is encrypted
writer->mCrypto.mIV.AppendElements(iv, 8);
// Iv from a sample is 64 bits, must be padded with 64 bits more 0s
// in compliance with spec
for (uint32_t i = 0; i < 8; i++) {
writer->mCrypto.mIV.AppendElement(0);
}
if (packetEncryption == NESTEGG_PACKET_HAS_SIGNAL_BYTE_ENCRYPTED) {
writer->mCrypto.mPlainSizes.AppendElement(0);
writer->mCrypto.mEncryptedSizes.AppendElement(length);
} else if (packetEncryption ==
NESTEGG_PACKET_HAS_SIGNAL_BYTE_PARTITIONED) {
uint8_t numPartitions = 0;
const uint32_t* partitions = NULL;
nestegg_packet_offsets(holder->Packet(), &partitions, &numPartitions);
// WebM stores a list of 'partitions' in the data, which alternate
// clear, encrypted. The data in the first partition is always clear.
// So, and sample might look as follows:
// 00|XXXX|000|XX, where | represents a partition, 0 a clear byte and
// X an encrypted byte. If the first bytes in sample are unencrypted,
// the first partition will be at zero |XXXX|000|XX.
//
// As GMP expects the lengths of the clear and encrypted chunks of
// data, we calculate these from the difference between the last two
// partitions.
uint32_t lastOffset = 0;
bool encrypted = false;
for (uint8_t i = 0; i < numPartitions; i++) {
uint32_t partition = partitions[i];
uint32_t currentLength = partition - lastOffset;
if (encrypted) {
writer->mCrypto.mEncryptedSizes.AppendElement(currentLength);
} else {
writer->mCrypto.mPlainSizes.AppendElement(currentLength);
}
encrypted = !encrypted;
lastOffset = partition;
MOZ_ASSERT(lastOffset <= length);
}
// Add the data between the last offset and the end of the data.
// 000|XXX|000
// ^---^
if (encrypted) {
writer->mCrypto.mEncryptedSizes.AppendElement(length - lastOffset);
} else {
writer->mCrypto.mPlainSizes.AppendElement(length - lastOffset);
}
// Make sure we have an equal number of encrypted and plain sizes (GMP
// expects this). This simple check is sufficient as there are two
// possible cases at this point:
// 1. The number of samples are even (so we don't need to do anything)
// 2. There is one more clear sample than encrypted samples, so add a
// zero length encrypted chunk.
// There can never be more encrypted partitions than clear partitions
// due to the alternating structure of the WebM samples and the
// restriction that the first chunk is always clear.
if (numPartitions % 2 == 0) {
writer->mCrypto.mEncryptedSizes.AppendElement(0);
}
// Assert that the lengths of the encrypted and plain samples add to
// the length of the data.
MOZ_ASSERT(
((size_t)(std::accumulate(writer->mCrypto.mPlainSizes.begin(),
writer->mCrypto.mPlainSizes.end(), 0) +
std::accumulate(writer->mCrypto.mEncryptedSizes.begin(),
writer->mCrypto.mEncryptedSizes.end(),
0)) == length));
}
}
}
aSamples->Push(sample);
}
return NS_OK;
}
nsresult WebMDemuxer::NextPacket(TrackInfo::TrackType aType,
RefPtr<NesteggPacketHolder>& aPacket) {
bool isVideo = aType == TrackInfo::kVideoTrack;
// Flag to indicate that we do need to playback these types of
// packets.
bool hasType = isVideo ? mHasVideo : mHasAudio;
if (!hasType) {
return NS_ERROR_DOM_MEDIA_DEMUXER_ERR;
}
// The packet queue for the type that we are interested in.
WebMPacketQueue& packets = isVideo ? mVideoPackets : mAudioPackets;
if (packets.GetSize() > 0) {
aPacket = packets.PopFront();
return NS_OK;
}
// Track we are interested in
uint32_t ourTrack = isVideo ? mVideoTrack : mAudioTrack;
do {
RefPtr<NesteggPacketHolder> holder;
nsresult rv = DemuxPacket(aType, holder);
if (NS_FAILED(rv)) {
return rv;
}
if (!holder) {
return NS_ERROR_DOM_MEDIA_DEMUXER_ERR;
}
if (ourTrack == holder->Track()) {
aPacket = holder;
return NS_OK;
}
} while (true);
}
nsresult WebMDemuxer::DemuxPacket(TrackInfo::TrackType aType,
RefPtr<NesteggPacketHolder>& aPacket) {
nestegg_packet* packet;
int r = nestegg_read_packet(Context(aType), &packet);
if (r == 0) {
nestegg_read_reset(Context(aType));
return NS_ERROR_DOM_MEDIA_END_OF_STREAM;
} else if (r < 0) {
return NS_ERROR_DOM_MEDIA_DEMUXER_ERR;
}
unsigned int track = 0;
r = nestegg_packet_track(packet, &track);
if (r == -1) {
return NS_ERROR_DOM_MEDIA_DEMUXER_ERR;
}
int64_t offset = Resource(aType).Tell();
RefPtr<NesteggPacketHolder> holder = new NesteggPacketHolder();
if (!holder->Init(packet, offset, track, false)) {
return NS_ERROR_DOM_MEDIA_DEMUXER_ERR;
}
aPacket = holder;
return NS_OK;
}
void WebMDemuxer::PushAudioPacket(NesteggPacketHolder* aItem) {
mAudioPackets.PushFront(aItem);
}
void WebMDemuxer::PushVideoPacket(NesteggPacketHolder* aItem) {
mVideoPackets.PushFront(aItem);
}
nsresult WebMDemuxer::SeekInternal(TrackInfo::TrackType aType,
const TimeUnit& aTarget) {
EnsureUpToDateIndex();
uint32_t trackToSeek = mHasVideo ? mVideoTrack : mAudioTrack;
uint64_t target = aTarget.ToNanoseconds();
Reset(aType);
if (mSeekPreroll) {
uint64_t startTime = 0;
if (!mBufferedState->GetStartTime(&startTime)) {
startTime = 0;
}
WEBM_DEBUG("Seek Target: %f",
TimeUnit::FromNanoseconds(target).ToSeconds());
if (target < mSeekPreroll || target - mSeekPreroll < startTime) {
target = startTime;
} else {
target -= mSeekPreroll;
}
WEBM_DEBUG("SeekPreroll: %f StartTime: %f Adjusted Target: %f",
TimeUnit::FromNanoseconds(mSeekPreroll).ToSeconds(),
TimeUnit::FromNanoseconds(startTime).ToSeconds(),
TimeUnit::FromNanoseconds(target).ToSeconds());
}
int r = nestegg_track_seek(Context(aType), trackToSeek, target);
if (r == -1) {
WEBM_DEBUG("track_seek for track %u to %f failed, r=%d", trackToSeek,
TimeUnit::FromNanoseconds(target).ToSeconds(), r);
// Try seeking directly based on cluster information in memory.
int64_t offset = 0;
bool rv = mBufferedState->GetOffsetForTime(target, &offset);
if (!rv) {
WEBM_DEBUG("mBufferedState->GetOffsetForTime failed too");
return NS_ERROR_FAILURE;
}
r = nestegg_offset_seek(Context(aType), offset);
if (r == -1) {
WEBM_DEBUG("and nestegg_offset_seek to %" PRIu64 " failed", offset);
return NS_ERROR_FAILURE;
}
WEBM_DEBUG("got offset from buffered state: %" PRIu64 "", offset);
}
if (aType == TrackInfo::kAudioTrack) {
mLastAudioFrameTime.reset();
} else {
mLastVideoFrameTime.reset();
}
return NS_OK;
}
media::TimeIntervals WebMDemuxer::GetBuffered() {
EnsureUpToDateIndex();
AutoPinned<MediaResource> resource(
Resource(TrackInfo::kVideoTrack).GetResource());
media::TimeIntervals buffered;
MediaByteRangeSet ranges;
nsresult rv = resource->GetCachedRanges(ranges);
if (NS_FAILED(rv)) {
return media::TimeIntervals();
}
uint64_t duration = 0;
uint64_t startOffset = 0;
if (!nestegg_duration(Context(TrackInfo::kVideoTrack), &duration)) {
if (mBufferedState->GetStartTime(&startOffset)) {
duration += startOffset;
}
WEBM_DEBUG("Duration: %f StartTime: %f",
TimeUnit::FromNanoseconds(duration).ToSeconds(),
TimeUnit::FromNanoseconds(startOffset).ToSeconds());
}
for (uint32_t index = 0; index < ranges.Length(); index++) {
uint64_t start, end;
bool rv = mBufferedState->CalculateBufferedForRange(
ranges[index].mStart, ranges[index].mEnd, &start, &end);
if (rv) {
NS_ASSERTION(startOffset <= start,
"startOffset negative or larger than start time");
if (duration && end > duration) {
WEBM_DEBUG("limit range to duration, end: %f duration: %f",
TimeUnit::FromNanoseconds(end).ToSeconds(),
TimeUnit::FromNanoseconds(duration).ToSeconds());
end = duration;
}
auto startTime = TimeUnit::FromNanoseconds(start);
auto endTime = TimeUnit::FromNanoseconds(end);
WEBM_DEBUG("add range %f-%f", startTime.ToSeconds(), endTime.ToSeconds());
buffered += media::TimeInterval(startTime, endTime);
}
}
return buffered;
}
bool WebMDemuxer::GetOffsetForTime(uint64_t aTime, int64_t* aOffset) {
EnsureUpToDateIndex();
return mBufferedState && mBufferedState->GetOffsetForTime(aTime, aOffset);
}
// WebMTrackDemuxer
WebMTrackDemuxer::WebMTrackDemuxer(WebMDemuxer* aParent,
TrackInfo::TrackType aType,
uint32_t aTrackNumber)
: mParent(aParent), mType(aType), mNeedKeyframe(true) {
mInfo = mParent->GetTrackInfo(aType, aTrackNumber);
MOZ_ASSERT(mInfo);
}
WebMTrackDemuxer::~WebMTrackDemuxer() { mSamples.Reset(); }
UniquePtr<TrackInfo> WebMTrackDemuxer::GetInfo() const {
return mInfo->Clone();
}
RefPtr<WebMTrackDemuxer::SeekPromise> WebMTrackDemuxer::Seek(
const TimeUnit& aTime) {
// Seeks to aTime. Upon success, SeekPromise will be resolved with the
// actual time seeked to. Typically the random access point time
auto seekTime = aTime;
bool keyframe = false;
mNeedKeyframe = true;
do {
mSamples.Reset();
mParent->SeekInternal(mType, seekTime);
nsresult rv = mParent->GetNextPacket(mType, &mSamples);
if (NS_FAILED(rv)) {
if (rv == NS_ERROR_DOM_MEDIA_END_OF_STREAM) {
// Ignore the error for now, the next GetSample will be rejected with
// EOS.
return SeekPromise::CreateAndResolve(TimeUnit::Zero(), __func__);
}
return SeekPromise::CreateAndReject(rv, __func__);
}
// Check what time we actually seeked to.
if (mSamples.GetSize() == 0) {
// We can't determine if the seek succeeded at this stage, so break the
// loop.
break;
}
for (const auto& sample : mSamples) {
seekTime = sample->mTime;
keyframe = sample->mKeyframe;
if (keyframe) {
break;
}
}
if (mType == TrackInfo::kVideoTrack &&
!mInfo->GetAsVideoInfo()->HasAlpha()) {
// We only perform a search for a keyframe on videos with alpha layer to
// prevent potential regression for normal video (even though invalid)
break;
}
if (!keyframe) {
// We didn't find any keyframe, attempt to seek to the previous cluster.
seekTime = mSamples.First()->mTime - TimeUnit::FromMicroseconds(1);
}
} while (!keyframe && seekTime >= TimeUnit::Zero());
SetNextKeyFrameTime();
return SeekPromise::CreateAndResolve(seekTime, __func__);
}
nsresult WebMTrackDemuxer::NextSample(RefPtr<MediaRawData>& aData) {
nsresult rv = NS_ERROR_DOM_MEDIA_END_OF_STREAM;
while (mSamples.GetSize() < 1 &&
NS_SUCCEEDED((rv = mParent->GetNextPacket(mType, &mSamples)))) {
}
if (mSamples.GetSize()) {
aData = mSamples.PopFront();
return NS_OK;
}
return rv;
}
RefPtr<WebMTrackDemuxer::SamplesPromise> WebMTrackDemuxer::GetSamples(
int32_t aNumSamples) {
RefPtr<SamplesHolder> samples = new SamplesHolder;
MOZ_ASSERT(aNumSamples);
nsresult rv = NS_ERROR_DOM_MEDIA_END_OF_STREAM;
while (aNumSamples) {
RefPtr<MediaRawData> sample;
rv = NextSample(sample);
if (NS_FAILED(rv)) {
break;
}
// Ignore empty samples.
if (sample->Size() == 0) {
WEBM_DEBUG(
"0 sized sample encountered while getting samples, skipping it");
continue;
}
if (mNeedKeyframe && !sample->mKeyframe) {
continue;
}
if (!sample->HasValidTime()) {
return SamplesPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_DEMUXER_ERR,
__func__);
}
mNeedKeyframe = false;
samples->AppendSample(sample);
aNumSamples--;
}
if (samples->GetSamples().IsEmpty()) {
return SamplesPromise::CreateAndReject(rv, __func__);
} else {
UpdateSamples(samples->GetSamples());
return SamplesPromise::CreateAndResolve(samples, __func__);
}
}
void WebMTrackDemuxer::SetNextKeyFrameTime() {
if (mType != TrackInfo::kVideoTrack || mParent->IsMediaSource()) {
return;
}
auto frameTime = TimeUnit::Invalid();
mNextKeyframeTime.reset();
MediaRawDataQueue skipSamplesQueue;
bool foundKeyframe = false;
while (!foundKeyframe && mSamples.GetSize()) {
RefPtr<MediaRawData> sample = mSamples.PopFront();
if (sample->mKeyframe) {
frameTime = sample->mTime;
foundKeyframe = true;
}
skipSamplesQueue.Push(sample.forget());
}
Maybe<int64_t> startTime;
if (skipSamplesQueue.GetSize()) {
const RefPtr<MediaRawData>& sample = skipSamplesQueue.First();
startTime.emplace(sample->mTimecode.ToMicroseconds());
}
// Demux and buffer frames until we find a keyframe.
RefPtr<MediaRawData> sample;
nsresult rv = NS_OK;
while (!foundKeyframe && NS_SUCCEEDED((rv = NextSample(sample)))) {
if (sample->mKeyframe) {
frameTime = sample->mTime;
foundKeyframe = true;
}
int64_t sampleTimecode = sample->mTimecode.ToMicroseconds();
skipSamplesQueue.Push(sample.forget());
if (!startTime) {
startTime.emplace(sampleTimecode);
} else if (!foundKeyframe &&
sampleTimecode > startTime.ref() + MAX_LOOK_AHEAD) {
WEBM_DEBUG("Couldn't find keyframe in a reasonable time, aborting");
break;
}
}
// We may have demuxed more than intended, so ensure that all frames are kept
// in the right order.
mSamples.PushFront(std::move(skipSamplesQueue));
if (frameTime.IsValid()) {
mNextKeyframeTime.emplace(frameTime);
WEBM_DEBUG(
"Next Keyframe %f (%u queued %.02fs)",
mNextKeyframeTime.value().ToSeconds(), uint32_t(mSamples.GetSize()),
(mSamples.Last()->mTimecode - mSamples.First()->mTimecode).ToSeconds());
} else {
WEBM_DEBUG("Couldn't determine next keyframe time (%u queued)",
uint32_t(mSamples.GetSize()));
}
}
void WebMTrackDemuxer::Reset() {
mSamples.Reset();
media::TimeIntervals buffered = GetBuffered();
mNeedKeyframe = true;
if (!buffered.IsEmpty()) {
WEBM_DEBUG("Seek to start point: %f", buffered.Start(0).ToSeconds());
mParent->SeekInternal(mType, buffered.Start(0));
SetNextKeyFrameTime();
} else {
mNextKeyframeTime.reset();
}
}
void WebMTrackDemuxer::UpdateSamples(
const nsTArray<RefPtr<MediaRawData>>& aSamples) {
for (const auto& sample : aSamples) {
if (sample->mCrypto.IsEncrypted()) {
UniquePtr<MediaRawDataWriter> writer(sample->CreateWriter());
writer->mCrypto.mIVSize = mInfo->mCrypto.mIVSize;
writer->mCrypto.mKeyId.AppendElements(mInfo->mCrypto.mKeyId);
}
}
if (mNextKeyframeTime.isNothing() ||
aSamples.LastElement()->mTime >= mNextKeyframeTime.value()) {
SetNextKeyFrameTime();
}
}
nsresult WebMTrackDemuxer::GetNextRandomAccessPoint(TimeUnit* aTime) {
if (mNextKeyframeTime.isNothing()) {
// There's no next key frame.
*aTime = TimeUnit::FromInfinity();
} else {
*aTime = mNextKeyframeTime.ref();
}
return NS_OK;
}
RefPtr<WebMTrackDemuxer::SkipAccessPointPromise>
WebMTrackDemuxer::SkipToNextRandomAccessPoint(const TimeUnit& aTimeThreshold) {
uint32_t parsed = 0;
bool found = false;
RefPtr<MediaRawData> sample;
nsresult rv = NS_OK;
WEBM_DEBUG("TimeThreshold: %f", aTimeThreshold.ToSeconds());
while (!found && NS_SUCCEEDED((rv = NextSample(sample)))) {
parsed++;
if (sample->mKeyframe && sample->mTime >= aTimeThreshold) {
WEBM_DEBUG("next sample: %f (parsed: %d)", sample->mTime.ToSeconds(),
parsed);
found = true;
mSamples.Reset();
mSamples.PushFront(sample.forget());
}
}
if (NS_SUCCEEDED(rv)) {
SetNextKeyFrameTime();
}
if (found) {
return SkipAccessPointPromise::CreateAndResolve(parsed, __func__);
} else {
SkipFailureHolder failure(NS_ERROR_DOM_MEDIA_END_OF_STREAM, parsed);
return SkipAccessPointPromise::CreateAndReject(std::move(failure),
__func__);
}
}
media::TimeIntervals WebMTrackDemuxer::GetBuffered() {
return mParent->GetBuffered();
}
void WebMTrackDemuxer::BreakCycles() { mParent = nullptr; }
int64_t WebMTrackDemuxer::GetEvictionOffset(const TimeUnit& aTime) {
int64_t offset;
if (!mParent->GetOffsetForTime(aTime.ToNanoseconds(), &offset)) {
return 0;
}
return offset;
}
} // namespace mozilla
#undef WEBM_DEBUG