Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <stdint.h>
#include <math.h>
#include <memory>
#include "../AudioPacketizer.h"
#include "../TimedPacketizer.h"
#include "gtest/gtest.h"
using namespace mozilla;
template <typename T>
class AutoBuffer {
public:
explicit AutoBuffer(size_t aLength) { mStorage = new T[aLength]; }
~AutoBuffer() { delete[] mStorage; }
T* Get() { return mStorage; }
private:
T* mStorage;
};
int16_t Sequence(int16_t* aBuffer, uint32_t aSize, uint32_t aStart = 0) {
uint32_t i;
for (i = 0; i < aSize; i++) {
aBuffer[i] = (aStart + i) % INT16_MAX;
}
return aStart + i;
}
void IsSequence(int16_t* aBuffer, uint32_t aSize, uint32_t aStart = 0) {
for (uint32_t i = 0; i < aSize; i++) {
ASSERT_EQ(aBuffer[i], static_cast<int64_t>((aStart + i) % INT16_MAX))
<< "Buffer is not a sequence at offset " << i << '\n';
}
// Buffer is a sequence.
}
void Zero(std::unique_ptr<int16_t[]> aBuffer, uint32_t aSize) {
for (uint32_t i = 0; i < aSize; i++) {
ASSERT_TRUE(aBuffer[i] == 0)
<< "Buffer is not null at offset " << i << '\n';
}
}
double sine(uint32_t aPhase) { return sin(aPhase * 2 * M_PI * 440 / 44100); }
TEST(AudioPacketizer, Test)
{
for (int16_t channels = 1; channels < 2; channels++) {
// Test that the packetizer returns zero on underrun
{
AudioPacketizer<int16_t, int16_t> ap(441, channels);
for (int16_t i = 0; i < 10; i++) {
std::unique_ptr<int16_t[]> out(ap.Output());
Zero(std::move(out), 441);
}
}
// Simple test, with input/output buffer size aligned on the packet size,
// alternating Input and Output calls.
{
AudioPacketizer<int16_t, int16_t> ap(441, channels);
int16_t seqEnd = 0;
for (int16_t i = 0; i < 10; i++) {
AutoBuffer<int16_t> b(441 * channels);
int16_t prevEnd = seqEnd;
seqEnd = Sequence(b.Get(), channels * 441, prevEnd);
ap.Input(b.Get(), 441);
std::unique_ptr<int16_t[]> out(ap.Output());
IsSequence(out.get(), 441 * channels, prevEnd);
}
}
// Simple test, with input/output buffer size aligned on the packet size,
// alternating two Input and Output calls.
{
AudioPacketizer<int16_t, int16_t> ap(441, channels);
int16_t seqEnd = 0;
for (int16_t i = 0; i < 10; i++) {
AutoBuffer<int16_t> b(441 * channels);
AutoBuffer<int16_t> b1(441 * channels);
int16_t prevEnd0 = seqEnd;
seqEnd = Sequence(b.Get(), 441 * channels, prevEnd0);
int16_t prevEnd1 = seqEnd;
seqEnd = Sequence(b1.Get(), 441 * channels, seqEnd);
ap.Input(b.Get(), 441);
ap.Input(b1.Get(), 441);
std::unique_ptr<int16_t[]> out(ap.Output());
std::unique_ptr<int16_t[]> out2(ap.Output());
IsSequence(out.get(), 441 * channels, prevEnd0);
IsSequence(out2.get(), 441 * channels, prevEnd1);
}
}
// Input/output buffer size not aligned on the packet size,
// alternating two Input and Output calls.
{
AudioPacketizer<int16_t, int16_t> ap(441, channels);
int16_t prevEnd = 0;
int16_t prevSeq = 0;
for (int16_t i = 0; i < 10; i++) {
AutoBuffer<int16_t> b(480 * channels);
AutoBuffer<int16_t> b1(480 * channels);
prevSeq = Sequence(b.Get(), 480 * channels, prevSeq);
prevSeq = Sequence(b1.Get(), 480 * channels, prevSeq);
ap.Input(b.Get(), 480);
ap.Input(b1.Get(), 480);
std::unique_ptr<int16_t[]> out(ap.Output());
std::unique_ptr<int16_t[]> out2(ap.Output());
IsSequence(out.get(), 441 * channels, prevEnd);
prevEnd += 441 * channels;
IsSequence(out2.get(), 441 * channels, prevEnd);
prevEnd += 441 * channels;
}
printf("Available: %d\n", ap.PacketsAvailable());
}
// "Real-life" test case: streaming a sine wave through a packetizer, and
// checking that we have the right output.
// 128 is, for example, the size of a Web Audio API block, and 441 is the
// size of a webrtc.org packet when the sample rate is 44100 (10ms)
{
AudioPacketizer<int16_t, int16_t> ap(441, channels);
AutoBuffer<int16_t> b(128 * channels);
uint32_t phase = 0;
uint32_t outPhase = 0;
for (int16_t i = 0; i < 1000; i++) {
for (int32_t j = 0; j < 128; j++) {
for (int32_t c = 0; c < channels; c++) {
// int16_t sinewave at 440Hz/44100Hz sample rate
b.Get()[j * channels + c] = (2 << 14) * sine(phase);
}
phase++;
}
ap.Input(b.Get(), 128);
while (ap.PacketsAvailable()) {
std::unique_ptr<int16_t[]> packet(ap.Output());
for (uint32_t k = 0; k < ap.mPacketSize; k++) {
for (int32_t c = 0; c < channels; c++) {
ASSERT_TRUE(packet[k * channels + c] ==
static_cast<int16_t>(((2 << 14) * sine(outPhase))));
}
outPhase++;
}
}
}
}
// Test that clearing the packetizer empties it and starts returning zeros.
{
AudioPacketizer<int16_t, int16_t> ap(441, channels);
AutoBuffer<int16_t> b(440 * channels);
Sequence(b.Get(), 440 * channels);
ap.Input(b.Get(), 440);
EXPECT_EQ(ap.FramesAvailable(), 440U);
ap.Clear();
EXPECT_EQ(ap.FramesAvailable(), 0U);
EXPECT_TRUE(ap.Empty());
std::unique_ptr<int16_t[]> out(ap.Output());
Zero(std::move(out), 441);
}
}
}
TEST(TimedPacketizer, Test)
{
const int channels = 2;
const int64_t rate = 48000;
const int64_t inputPacketSize = 240;
const int64_t packetSize = 96;
TimedPacketizer<int16_t, int16_t> tp(packetSize, channels, 0, rate);
int16_t prevEnd = 0;
int16_t prevSeq = 0;
nsTArray<int16_t> packet;
uint64_t tsCheck = 0;
packet.SetLength(tp.PacketSize() * channels);
for (int16_t i = 0; i < 10; i++) {
AutoBuffer<int16_t> b(inputPacketSize * channels);
prevSeq = Sequence(b.Get(), inputPacketSize * channels, prevSeq);
tp.Input(b.Get(), inputPacketSize);
while (tp.PacketsAvailable()) {
media::TimeUnit ts = tp.Output(packet.Elements());
IsSequence(packet.Elements(), packetSize * channels, prevEnd);
EXPECT_EQ(ts, media::TimeUnit(tsCheck, rate));
prevEnd += packetSize * channels;
tsCheck += packetSize;
}
}
EXPECT_TRUE(!tp.PacketsAvailable());
uint32_t drained;
media::TimeUnit ts = tp.Drain(packet.Elements(), drained);
EXPECT_EQ(ts, media::TimeUnit(tsCheck, rate));
EXPECT_LE(drained, packetSize);
}