Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
"use strict";
// CensusTreeNode is an intermediate representation of a census report that
// exists between after a report is generated by taking a census and before the
// report is rendered in the DOM. It must be dead simple to render, with no
// further data processing or massaging needed before rendering DOM nodes. Our
// goal is to do the census report to CensusTreeNode transformation in the
// HeapAnalysesWorker, and ensure that the **only** work that the main thread
// has to do is strictly DOM rendering work.
const {
Visitor,
walk,
basisTotalBytes,
basisTotalCount,
// Monotonically increasing integer for CensusTreeNode `id`s.
let censusTreeNodeIdCounter = 0;
/**
* Return true if the given object is a SavedFrame stack object, false otherwise.
*
* @param {any} obj
* @returns {Boolean}
*/
function isSavedFrame(obj) {
return Object.prototype.toString.call(obj) === "[object SavedFrame]";
}
/**
* A CensusTreeNodeCache maps from SavedFrames to CensusTreeNodes. It is used when
* aggregating multiple SavedFrame allocation stack keys into a tree of many
* CensusTreeNodes. Each stack may share older frames, and we want to preserve
* this sharing when converting to CensusTreeNode, so before creating a new
* CensusTreeNode, we look for an existing one in one of our CensusTreeNodeCaches.
*/
function CensusTreeNodeCache() {}
CensusTreeNodeCache.prototype = null;
/**
* The value of a single entry stored in a CensusTreeNodeCache. It is a pair of
* the CensusTreeNode for this cache value, and the subsequent
* CensusTreeNodeCache for this node's children.
*
* @param {SavedFrame} frame
* The frame being cached.
*/
function CensusTreeNodeCacheValue() {
// The CensusTreeNode for this cache value.
this.node = undefined;
// The CensusTreeNodeCache for this frame's children.
this.children = undefined;
}
CensusTreeNodeCacheValue.prototype = null;
/**
* Create a unique string for the given SavedFrame (ignoring the frame's parent
* chain) that can be used as a hash to key this frame within a CensusTreeNodeCache.
*
* NB: We manually hash rather than using an ES6 Map because we are purposely
* ignoring the parent chain and wish to consider frames with everything the
* same except their parents as the same.
*
* @param {SavedFrame} frame
* The SavedFrame object we would like to lookup in or insert into a
* CensusTreeNodeCache.
*
* @returns {String}
* The unique string that can be used as a key in a CensusTreeNodeCache.
*/
CensusTreeNodeCache.hashFrame = function (frame) {
// eslint-disable-next-line max-len
return `FRAME,${frame.functionDisplayName},${frame.source},${frame.line},${frame.column},${frame.asyncCause}`;
};
/**
* Create a unique string for the given CensusTreeNode **with regards to
* siblings at the current depth of the tree, not within the whole tree.** It
* can be used as a hash to key this node within a CensusTreeNodeCache.
*
* @param {CensusTreeNode} node
* The node we would like to lookup in or insert into a cache.
*
* @returns {String}
* The unique string that can be used as a key in a CensusTreeNodeCache.
*/
CensusTreeNodeCache.hashNode = function (node) {
return isSavedFrame(node.name)
? CensusTreeNodeCache.hashFrame(node.name)
: `NODE,${node.name}`;
};
/**
* Insert the given CensusTreeNodeCacheValue whose node.name is a SavedFrame
* object in the given cache.
*
* @param {CensusTreeNodeCache} cache
* @param {CensusTreeNodeCacheValue} value
*/
CensusTreeNodeCache.insertFrame = function (cache, value) {
cache[CensusTreeNodeCache.hashFrame(value.node.name)] = value;
};
/**
* Insert the given value in the cache.
*
* @param {CensusTreeNodeCache} cache
* @param {CensusTreeNodeCacheValue} value
*/
CensusTreeNodeCache.insertNode = function (cache, value) {
if (isSavedFrame(value.node.name)) {
CensusTreeNodeCache.insertFrame(cache, value);
} else {
cache[CensusTreeNodeCache.hashNode(value.node)] = value;
}
};
/**
* Lookup `frame` in `cache` and return its value if it exists.
*
* @param {CensusTreeNodeCache} cache
* @param {SavedFrame} frame
*
* @returns {undefined|CensusTreeNodeCacheValue}
*/
CensusTreeNodeCache.lookupFrame = function (cache, frame) {
return cache[CensusTreeNodeCache.hashFrame(frame)];
};
/**
* Lookup `node` in `cache` and return its value if it exists.
*
* @param {CensusTreeNodeCache} cache
* @param {CensusTreeNode} node
*
* @returns {undefined|CensusTreeNodeCacheValue}
*/
CensusTreeNodeCache.lookupNode = function (cache, node) {
return isSavedFrame(node.name)
? CensusTreeNodeCache.lookupFrame(cache, node.name)
: cache[CensusTreeNodeCache.hashNode(node)];
};
/**
* Add `child` to `parent`'s set of children and store the parent ID
* on the child.
*
* @param {CensusTreeNode} parent
* @param {CensusTreeNode} child
*/
function addChild(parent, child) {
if (!parent.children) {
parent.children = [];
}
child.parent = parent.id;
parent.children.push(child);
}
/**
* Get an array of each frame in the provided stack.
*
* @param {SavedFrame} stack
* @returns {Array<SavedFrame>}
*/
function getArrayOfFrames(stack) {
const frames = [];
let frame = stack;
while (frame) {
frames.push(frame);
frame = frame.parent;
}
frames.reverse();
return frames;
}
/**
* Given an `edge` to a sub-`report` whose structure is described by
* `breakdown`, create a CensusTreeNode tree.
*
* @param {Object} breakdown
* The breakdown specifying the structure of the given report.
*
* @param {Object} report
* The census report.
*
* @param {null|String|SavedFrame} edge
* The edge leading to this report from the parent report.
*
* @param {CensusTreeNodeCache} cache
* The cache of CensusTreeNodes we have already made for the siblings of
* the node being created. The existing nodes are reused when possible.
*
* @param {Object} outParams
* The return values are attached to this object after this function
* returns. Because we create a CensusTreeNode for each frame in a
* SavedFrame stack edge, there may multiple nodes per sub-report.
*
* - top: The deepest node in the CensusTreeNode subtree created.
*
* - bottom: The shallowest node in the CensusTreeNode subtree created.
* This is null if the shallowest node in the subtree was
* found in the `cache` and reused.
*
* Note that top and bottom are not necessarily different. In the case
* where there is a 1:1 correspondence between an edge in the report and
* a CensusTreeNode, top and bottom refer to the same node.
*/
function makeCensusTreeNodeSubTree(breakdown, report, edge, cache, outParams) {
if (!isSavedFrame(edge)) {
const node = new CensusTreeNode(edge);
outParams.top = outParams.bottom = node;
return;
}
const frames = getArrayOfFrames(edge);
let currentCache = cache;
let prevNode;
for (let i = 0, length = frames.length; i < length; i++) {
const frame = frames[i];
// Get or create the CensusTreeNodeCacheValue for this frame. If we already
// have a CensusTreeNodeCacheValue (and hence a CensusTreeNode) for this
// frame, we don't need to add the node to the previous node's children as
// we have already done that. If we don't have a CensusTreeNodeCacheValue
// and CensusTreeNode for this frame, then create one and make sure to hook
// it up as a child of the previous node.
let isNewNode = false;
let val = CensusTreeNodeCache.lookupFrame(currentCache, frame);
if (!val) {
isNewNode = true;
val = new CensusTreeNodeCacheValue();
val.node = new CensusTreeNode(frame);
CensusTreeNodeCache.insertFrame(currentCache, val);
if (prevNode) {
addChild(prevNode, val.node);
}
}
if (i === 0) {
outParams.bottom = isNewNode ? val.node : null;
}
if (i === length - 1) {
outParams.top = val.node;
}
prevNode = val.node;
if (i !== length - 1 && !val.children) {
// This is not the last frame and therefore this node will have
// children, which we must cache.
val.children = new CensusTreeNodeCache();
}
currentCache = val.children;
}
}
/**
* A Visitor that walks a census report and creates the corresponding
* CensusTreeNode tree.
*/
function CensusTreeNodeVisitor() {
// The root of the resulting CensusTreeNode tree.
this._root = null;
// The stack of CensusTreeNodes that we are in the process of building while
// walking the census report.
this._nodeStack = [];
// To avoid unnecessary allocations, we reuse the same out parameter object
// passed to `makeCensusTreeNodeSubTree` every time we call it.
this._outParams = {
top: null,
bottom: null,
};
// The stack of `CensusTreeNodeCache`s that we use to aggregate many
// SavedFrame stacks into a single CensusTreeNode tree.
this._cacheStack = [new CensusTreeNodeCache()];
// The current index in the DFS of the census report tree.
this._index = -1;
}
CensusTreeNodeVisitor.prototype = Object.create(Visitor);
/**
* Create the CensusTreeNode subtree for this sub-report and link it to the
* parent CensusTreeNode.
*
* @overrides Visitor.prototype.enter
*/
CensusTreeNodeVisitor.prototype.enter = function (breakdown, report, edge) {
this._index++;
const cache = this._cacheStack[this._cacheStack.length - 1];
makeCensusTreeNodeSubTree(breakdown, report, edge, cache, this._outParams);
const { top, bottom } = this._outParams;
if (!this._root) {
this._root = bottom;
} else if (bottom) {
addChild(this._nodeStack[this._nodeStack.length - 1], bottom);
}
this._cacheStack.push(new CensusTreeNodeCache());
this._nodeStack.push(top);
};
function values(cache) {
return Object.keys(cache).map(k => cache[k]);
}
function isNonEmpty(node) {
return (
(node.children !== undefined && node.children.length) ||
node.bytes !== 0 ||
node.count !== 0
);
}
/**
* We have finished adding children to the CensusTreeNode subtree for the
* current sub-report. Make sure that the children are sorted for every node in
* the subtree.
*
* @overrides Visitor.prototype.exit
*/
CensusTreeNodeVisitor.prototype.exit = function () {
// Ensure all children are sorted and have their counts/bytes aggregated. We
// only need to consider cache children here, because other children
// correspond to other sub-reports and we already fixed them up in an earlier
// invocation of `exit`.
function dfs(node, childrenCache) {
if (childrenCache) {
const childValues = values(childrenCache);
for (let i = 0, length = childValues.length; i < length; i++) {
dfs(childValues[i].node, childValues[i].children);
}
}
node.totalCount = node.count;
node.totalBytes = node.bytes;
if (node.children) {
// Prune empty leaves.
node.children = node.children.filter(isNonEmpty);
node.children.sort(compareByTotal);
for (let i = 0, length = node.children.length; i < length; i++) {
node.totalCount += node.children[i].totalCount;
node.totalBytes += node.children[i].totalBytes;
}
}
}
const top = this._nodeStack.pop();
const cache = this._cacheStack.pop();
dfs(top, cache);
};
/**
* @overrides Visitor.prototype.count
*/
CensusTreeNodeVisitor.prototype.count = function (breakdown, report) {
const node = this._nodeStack[this._nodeStack.length - 1];
node.reportLeafIndex = this._index;
if (breakdown.count) {
node.count = report.count;
}
if (breakdown.bytes) {
node.bytes = report.bytes;
}
};
/**
* Get the root of the resulting CensusTreeNode tree.
*
* @returns {CensusTreeNode}
*/
CensusTreeNodeVisitor.prototype.root = function () {
if (!this._root) {
throw new Error(
"Attempt to get the root before walking the census report!"
);
}
if (this._nodeStack.length) {
throw new Error("Attempt to get the root while walking the census report!");
}
return this._root;
};
/**
* Create a single, uninitialized CensusTreeNode.
*
* @param {null|String|SavedFrame} name
*/
function CensusTreeNode(name) {
// Display name for this CensusTreeNode. Either null, a string, or a
// SavedFrame.
this.name = name;
// The number of bytes occupied by matching things in the heap snapshot.
this.bytes = 0;
// The sum of `this.bytes` and `child.totalBytes` for each child in
// `this.children`.
this.totalBytes = 0;
// The number of things in the heap snapshot that match this node in the
// census tree.
this.count = 0;
// The sum of `this.count` and `child.totalCount` for each child in
// `this.children`.
this.totalCount = 0;
// An array of this node's children, or undefined if it has no children.
this.children = undefined;
// The unique ID of this node.
this.id = ++censusTreeNodeIdCounter;
// If present, the unique ID of this node's parent. If this node does not have
// a parent, then undefined.
this.parent = undefined;
// The `reportLeafIndex` property allows mapping a CensusTreeNode node back to
// a leaf in the census report it was generated from. It is always one of the
// following variants:
//
// * A `Number` index pointing a leaf report in a pre-order DFS traversal of
// this CensusTreeNode's census report.
//
// * A `Set` object containing such indices, when this is part of an inverted
// CensusTreeNode tree and multiple leaves in the report map onto this node.
//
// * Finally, `undefined` when no leaves in the census report correspond with
// this node.
//
// The first and third cases are the common cases. The second case is rather
// uncommon, and to avoid doubling the number of allocations when creating
// CensusTreeNode trees, and objects that get structured cloned when sending
// such trees from the HeapAnalysesWorker to the main thread, we only allocate
// a Set object once a node actually does have multiple leaves it corresponds
// to.
this.reportLeafIndex = undefined;
}
CensusTreeNode.prototype = null;
/**
* Compare the given nodes by their `totalBytes` properties, and breaking ties
* with the `totalCount`, `bytes`, and `count` properties (in that order).
*
* @param {CensusTreeNode} node1
* @param {CensusTreeNode} node2
*
* @returns {Number}
* A number suitable for using with Array.prototype.sort.
*/
function compareByTotal(node1, node2) {
return (
Math.abs(node2.totalBytes) - Math.abs(node1.totalBytes) ||
Math.abs(node2.totalCount) - Math.abs(node1.totalCount) ||
Math.abs(node2.bytes) - Math.abs(node1.bytes) ||
Math.abs(node2.count) - Math.abs(node1.count)
);
}
/**
* Compare the given nodes by their `bytes` properties, and breaking ties with
* the `count`, `totalBytes`, and `totalCount` properties (in that order).
*
* @param {CensusTreeNode} node1
* @param {CensusTreeNode} node2
*
* @returns {Number}
* A number suitable for using with Array.prototype.sort.
*/
function compareBySelf(node1, node2) {
return (
Math.abs(node2.bytes) - Math.abs(node1.bytes) ||
Math.abs(node2.count) - Math.abs(node1.count) ||
Math.abs(node2.totalBytes) - Math.abs(node1.totalBytes) ||
Math.abs(node2.totalCount) - Math.abs(node1.totalCount)
);
}
/**
* Given a parent cache value from a tree we are building and a child node from
* a tree we are basing the new tree off of, if we already have a corresponding
* node in the parent's children cache, merge this node's counts with
* it. Otherwise, create the corresponding node, add it to the parent's children
* cache, and create the parent->child edge.
*
* @param {CensusTreeNodeCacheValue} parentCachevalue
* @param {CensusTreeNode} node
*
* @returns {CensusTreeNodeCacheValue}
* The new or extant child node's corresponding cache value.
*/
function insertOrMergeNode(parentCacheValue, node) {
if (!parentCacheValue.children) {
parentCacheValue.children = new CensusTreeNodeCache();
}
let val = CensusTreeNodeCache.lookupNode(parentCacheValue.children, node);
if (val) {
// When inverting, it is possible that multiple leaves in the census report
// get merged into a single CensusTreeNode node. When this occurs, switch
// from a single index to a set of indices.
if (
val.node.reportLeafIndex !== undefined &&
val.node.reportLeafIndex !== node.reportLeafIndex
) {
if (typeof val.node.reportLeafIndex === "number") {
const oldIndex = val.node.reportLeafIndex;
val.node.reportLeafIndex = new Set();
val.node.reportLeafIndex.add(oldIndex);
val.node.reportLeafIndex.add(node.reportLeafIndex);
} else {
val.node.reportLeafIndex.add(node.reportLeafIndex);
}
}
val.node.count += node.count;
val.node.bytes += node.bytes;
} else {
val = new CensusTreeNodeCacheValue();
val.node = new CensusTreeNode(node.name);
val.node.reportLeafIndex = node.reportLeafIndex;
val.node.count = node.count;
val.node.totalCount = node.totalCount;
val.node.bytes = node.bytes;
val.node.totalBytes = node.totalBytes;
addChild(parentCacheValue.node, val.node);
CensusTreeNodeCache.insertNode(parentCacheValue.children, val);
}
return val;
}
/**
* Given an un-inverted CensusTreeNode tree, return the corresponding inverted
* CensusTreeNode tree. The input tree is not modified. The resulting inverted
* tree is sorted by self bytes rather than by total bytes.
*
* @param {CensusTreeNode} tree
* The un-inverted tree.
*
* @returns {CensusTreeNode}
* The corresponding inverted tree.
*/
function invert(tree) {
const inverted = new CensusTreeNodeCacheValue();
inverted.node = new CensusTreeNode(null);
// Do a depth-first search of the un-inverted tree. As we reach each leaf,
// take the path from the old root to the leaf, reverse that path, and add it
// to the new, inverted tree's root.
const path = [];
(function addInvertedPaths(node) {
path.push(node);
if (node.children) {
for (let i = 0, length = node.children.length; i < length; i++) {
addInvertedPaths(node.children[i]);
}
} else {
// We found a leaf node, add the reverse path to the inverted tree.
let currentCacheValue = inverted;
for (let i = path.length - 1; i >= 0; i--) {
currentCacheValue = insertOrMergeNode(currentCacheValue, path[i]);
}
}
path.pop();
})(tree);
// Ensure that the root node always has the totals.
inverted.node.totalBytes = tree.totalBytes;
inverted.node.totalCount = tree.totalCount;
return inverted.node;
}
/**
* Given a CensusTreeNode tree and predicate function, create the tree
* containing only the nodes in any path `(node_0, node_1, ..., node_n-1)` in
* the given tree where `predicate(node_j)` is true for `0 <= j < n`, `node_0`
* is the given tree's root, and `node_n-1` is a leaf in the given tree. The
* given tree is left unmodified.
*
* @param {CensusTreeNode} tree
* @param {Function} predicate
*
* @returns {CensusTreeNode}
*/
function filter(tree, predicate) {
const filtered = new CensusTreeNodeCacheValue();
filtered.node = new CensusTreeNode(null);
// Do a DFS over the given tree. If the predicate returns true for any node,
// add that node and its whole subtree to the filtered tree.
const path = [];
let match = false;
function addMatchingNodes(node) {
path.push(node);
const oldMatch = match;
if (!match && predicate(node)) {
match = true;
}
if (node.children) {
for (let i = 0, length = node.children.length; i < length; i++) {
addMatchingNodes(node.children[i]);
}
} else if (match) {
// We found a matching leaf node, add it to the filtered tree.
let currentCacheValue = filtered;
for (let i = 0, length = path.length; i < length; i++) {
currentCacheValue = insertOrMergeNode(currentCacheValue, path[i]);
}
}
match = oldMatch;
path.pop();
}
if (tree.children) {
for (let i = 0, length = tree.children.length; i < length; i++) {
addMatchingNodes(tree.children[i]);
}
}
filtered.node.count = tree.count;
filtered.node.totalCount = tree.totalCount;
filtered.node.bytes = tree.bytes;
filtered.node.totalBytes = tree.totalBytes;
return filtered.node;
}
/**
* Given a filter string, return a predicate function that takes a node and
* returns true iff the node matches the filter.
*
* @param {String} filterString
* @returns {Function}
*/
function makeFilterPredicate(filterString) {
return function (node) {
if (!node.name) {
return false;
}
if (isSavedFrame(node.name)) {
return (
node.name.source.includes(filterString) ||
(node.name.functionDisplayName || "").includes(filterString) ||
(node.name.asyncCause || "").includes(filterString)
);
}
return String(node.name).includes(filterString);
};
}
/**
* Takes a report from a census (`dbg.memory.takeCensus()`) and the breakdown
* used to generate the census and returns a structure used to render
* a tree to display the data.
*
* Returns a recursive "CensusTreeNode" object, looking like:
*
* CensusTreeNode = {
* // `children` if it exists, is sorted by `bytes`, if they are leaf nodes.
* children: ?[<CensusTreeNode...>],
* name: <?String>
* count: <?Number>
* bytes: <?Number>
* id: <?Number>
* parent: <?Number>
* }
*
* @param {Object} breakdown
* The breakdown used to generate the census report.
*
* @param {Object} report
* The census report generated with the specified breakdown.
*
* @param {Object} options
* Configuration options.
* - invert: Whether to invert the resulting tree or not. Defaults to
* false, ie uninverted.
*
* @returns {CensusTreeNode}
*/
exports.censusReportToCensusTreeNode = function (
breakdown,
report,
options = {
invert: false,
filter: null,
}
) {
// Reset the counter so that turning the same census report into a
// CensusTreeNode tree repeatedly is idempotent.
censusTreeNodeIdCounter = 0;
const visitor = new CensusTreeNodeVisitor();
walk(breakdown, report, visitor);
let result = visitor.root();
if (options.invert) {
result = invert(result);
}
if (typeof options.filter === "string") {
result = filter(result, makeFilterPredicate(options.filter));
}
// If the report is a delta report that was generated by diffing two other
// reports, make sure to use the basis totals rather than the totals of the
// difference.
if (typeof report[basisTotalBytes] === "number") {
result.totalBytes = report[basisTotalBytes];
result.totalCount = report[basisTotalCount];
}
// Inverting and filtering could have messed up the sort order, so do a
// depth-first search of the tree and ensure that siblings are sorted.
const comparator = options.invert ? compareBySelf : compareByTotal;
(function ensureSorted(node) {
if (node.children) {
node.children.sort(comparator);
for (let i = 0, length = node.children.length; i < length; i++) {
ensureSorted(node.children[i]);
}
}
})(result);
return result;
};