Copy as Markdown
Other Tools
/* Automatically generated by wasm2c */
#include <assert.h>
#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <string.h>
#if defined(__MINGW32__)
#include <malloc.h>
#elif defined(_MSC_VER)
#include <intrin.h>
#include <malloc.h>
#define alloca _alloca
#elif defined(__FreeBSD__) || defined(__OpenBSD__)
#include <stdlib.h>
#else
#include <alloca.h>
#endif
#include "rlbox.wasm.h"
#define IS_SINGLE_UNSHARED_MEMORY 1
// Computes a pointer to an object of the given size in a little-endian memory.
//
// On a little-endian host, this is just &mem->data[addr] - the object's size is
// unused. On a big-endian host, it's &mem->data[mem->size - addr - n], where n
// is the object's size.
//
// Note that mem may be evaluated multiple times.
//
// Parameters:
// mem - The memory.
// addr - The address.
// n - The size of the object.
//
// Result:
// A pointer for an object of size n.
#if WABT_BIG_ENDIAN
#define MEM_ADDR(mem, addr, n) &(mem)->data[(mem)->size - (addr) - (n)]
#else
#define MEM_ADDR(mem, addr, n) &(mem)->data[addr]
#endif
// We can only use Segue for this module if it uses a single unshared imported
// or exported memory
#if WASM_RT_USE_SEGUE && IS_SINGLE_UNSHARED_MEMORY
#define WASM_RT_USE_SEGUE_FOR_THIS_MODULE 1
#else
#define WASM_RT_USE_SEGUE_FOR_THIS_MODULE 0
#endif
#if WASM_RT_USE_SEGUE_FOR_THIS_MODULE
// POSIX uses FS for TLS, GS is free
static inline void* wasm_rt_segue_read_base() {
if (wasm_rt_fsgsbase_inst_supported) {
return (void*)__builtin_ia32_rdgsbase64();
} else {
return wasm_rt_syscall_get_segue_base();
}
}
static inline void wasm_rt_segue_write_base(void* base) {
#if WASM_RT_SEGUE_FREE_SEGMENT
if (wasm_rt_last_segment_val == base) {
return;
}
wasm_rt_last_segment_val = base;
#endif
if (wasm_rt_fsgsbase_inst_supported) {
__builtin_ia32_wrgsbase64((uintptr_t)base);
} else {
wasm_rt_syscall_set_segue_base(base);
}
}
#define MEM_ADDR_MEMOP(mem, addr, n) ((uint8_t __seg_gs*)(uintptr_t)addr)
#else
#define MEM_ADDR_MEMOP(mem, addr, n) MEM_ADDR(mem, addr, n)
#endif
#define TRAP(x) (wasm_rt_trap(WASM_RT_TRAP_##x), 0)
#if WASM_RT_STACK_DEPTH_COUNT
#define FUNC_PROLOGUE \
if (++wasm_rt_call_stack_depth > WASM_RT_MAX_CALL_STACK_DEPTH) \
TRAP(EXHAUSTION);
#define FUNC_EPILOGUE --wasm_rt_call_stack_depth
#else
#define FUNC_PROLOGUE
#define FUNC_EPILOGUE
#endif
#define UNREACHABLE TRAP(UNREACHABLE)
static inline bool func_types_eq(const wasm_rt_func_type_t a,
const wasm_rt_func_type_t b) {
return (a == b) || LIKELY(a && b && !memcmp(a, b, 32));
}
#define CHECK_CALL_INDIRECT(table, ft, x) \
(LIKELY((x) < table.size && table.data[x].func && \
func_types_eq(ft, table.data[x].func_type)) || \
TRAP(CALL_INDIRECT))
#define DO_CALL_INDIRECT(table, t, x, ...) ((t)table.data[x].func)(__VA_ARGS__)
#define CALL_INDIRECT(table, t, ft, x, ...) \
(CHECK_CALL_INDIRECT(table, ft, x), \
DO_CALL_INDIRECT(table, t, x, __VA_ARGS__))
#ifdef SUPPORT_MEMORY64
#define RANGE_CHECK(mem, offset, len) \
do { \
uint64_t res; \
if (__builtin_add_overflow(offset, len, &res)) \
TRAP(OOB); \
if (UNLIKELY(res > mem->size)) \
TRAP(OOB); \
} while (0);
#else
#define RANGE_CHECK(mem, offset, len) \
if (UNLIKELY(offset + (uint64_t)len > mem->size)) \
TRAP(OOB);
#endif
#if WASM_RT_USE_SEGUE_FOR_THIS_MODULE && WASM_RT_SANITY_CHECKS
#include <stdio.h>
#define WASM_RT_CHECK_BASE(mem) \
if (((uintptr_t)((mem)->data)) != ((uintptr_t)wasm_rt_segue_read_base())) { \
puts("Segment register mismatch\n"); \
abort(); \
}
#else
#define WASM_RT_CHECK_BASE(mem)
#endif
#if WASM_RT_MEMCHECK_GUARD_PAGES
#define MEMCHECK(mem, a, t) WASM_RT_CHECK_BASE(mem);
#else
#define MEMCHECK(mem, a, t) \
WASM_RT_CHECK_BASE(mem); \
RANGE_CHECK(mem, a, sizeof(t))
#endif
#ifdef __GNUC__
#define FORCE_READ_INT(var) __asm__("" ::"r"(var));
// Clang on Mips requires "f" constraints on floats
#if defined(__clang__) && \
(defined(mips) || defined(__mips__) || defined(__mips))
#define FORCE_READ_FLOAT(var) __asm__("" ::"f"(var));
#else
#define FORCE_READ_FLOAT(var) __asm__("" ::"r"(var));
#endif
#else
#define FORCE_READ_INT(var)
#define FORCE_READ_FLOAT(var)
#endif
static inline void load_data(void* dest, const void* src, size_t n) {
if (!n) {
return;
}
wasm_rt_memcpy(dest, src, n);
#if WABT_BIG_ENDIAN
u8* dest_chars = dest;
for (size_t i = 0; i < (n >> 1); i++) {
u8 cursor = dest_chars[i];
dest_chars[i] = dest_chars[n - i - 1];
dest_chars[n - i - 1] = cursor;
}
#endif
}
#define LOAD_DATA(m, o, i, s) \
do { \
RANGE_CHECK((&m), o, s); \
load_data(MEM_ADDR(&m, o, s), i, s); \
} while (0)
#define DEFINE_LOAD(name, t1, t2, t3, force_read) \
static inline t3 name(wasm_rt_memory_t* mem, u64 addr) { \
MEMCHECK(mem, addr, t1); \
t1 result; \
wasm_rt_memcpy(&result, MEM_ADDR_MEMOP(mem, addr, sizeof(t1)), \
sizeof(t1)); \
force_read(result); \
return (t3)(t2)result; \
}
#define DEFINE_STORE(name, t1, t2) \
static inline void name(wasm_rt_memory_t* mem, u64 addr, t2 value) { \
MEMCHECK(mem, addr, t1); \
t1 wrapped = (t1)value; \
wasm_rt_memcpy(MEM_ADDR_MEMOP(mem, addr, sizeof(t1)), &wrapped, \
sizeof(t1)); \
}
DEFINE_LOAD(i32_load, u32, u32, u32, FORCE_READ_INT)
DEFINE_LOAD(i64_load, u64, u64, u64, FORCE_READ_INT)
DEFINE_LOAD(f32_load, f32, f32, f32, FORCE_READ_FLOAT)
DEFINE_LOAD(f64_load, f64, f64, f64, FORCE_READ_FLOAT)
DEFINE_LOAD(i32_load8_s, s8, s32, u32, FORCE_READ_INT)
DEFINE_LOAD(i64_load8_s, s8, s64, u64, FORCE_READ_INT)
DEFINE_LOAD(i32_load8_u, u8, u32, u32, FORCE_READ_INT)
DEFINE_LOAD(i64_load8_u, u8, u64, u64, FORCE_READ_INT)
DEFINE_LOAD(i32_load16_s, s16, s32, u32, FORCE_READ_INT)
DEFINE_LOAD(i64_load16_s, s16, s64, u64, FORCE_READ_INT)
DEFINE_LOAD(i32_load16_u, u16, u32, u32, FORCE_READ_INT)
DEFINE_LOAD(i64_load16_u, u16, u64, u64, FORCE_READ_INT)
DEFINE_LOAD(i64_load32_s, s32, s64, u64, FORCE_READ_INT)
DEFINE_LOAD(i64_load32_u, u32, u64, u64, FORCE_READ_INT)
DEFINE_STORE(i32_store, u32, u32)
DEFINE_STORE(i64_store, u64, u64)
DEFINE_STORE(f32_store, f32, f32)
DEFINE_STORE(f64_store, f64, f64)
DEFINE_STORE(i32_store8, u8, u32)
DEFINE_STORE(i32_store16, u16, u32)
DEFINE_STORE(i64_store8, u8, u64)
DEFINE_STORE(i64_store16, u16, u64)
DEFINE_STORE(i64_store32, u32, u64)
#if defined(_MSC_VER)
// Adapted from
static inline int I64_CLZ(unsigned long long v) {
unsigned long r = 0;
#if defined(_M_AMD64) || defined(_M_ARM)
if (_BitScanReverse64(&r, v)) {
return 63 - r;
}
#else
if (_BitScanReverse(&r, (unsigned long)(v >> 32))) {
return 31 - r;
} else if (_BitScanReverse(&r, (unsigned long)v)) {
return 63 - r;
}
#endif
return 64;
}
static inline int I32_CLZ(unsigned long v) {
unsigned long r = 0;
if (_BitScanReverse(&r, v)) {
return 31 - r;
}
return 32;
}
static inline int I64_CTZ(unsigned long long v) {
if (!v) {
return 64;
}
unsigned long r = 0;
#if defined(_M_AMD64) || defined(_M_ARM)
_BitScanForward64(&r, v);
return (int)r;
#else
if (_BitScanForward(&r, (unsigned int)(v))) {
return (int)(r);
}
_BitScanForward(&r, (unsigned int)(v >> 32));
return (int)(r + 32);
#endif
}
static inline int I32_CTZ(unsigned long v) {
if (!v) {
return 32;
}
unsigned long r = 0;
_BitScanForward(&r, v);
return (int)r;
}
#define POPCOUNT_DEFINE_PORTABLE(f_n, T) \
static inline u32 f_n(T x) { \
x = x - ((x >> 1) & (T) ~(T)0 / 3); \
x = (x & (T) ~(T)0 / 15 * 3) + ((x >> 2) & (T) ~(T)0 / 15 * 3); \
x = (x + (x >> 4)) & (T) ~(T)0 / 255 * 15; \
return (T)(x * ((T) ~(T)0 / 255)) >> (sizeof(T) - 1) * 8; \
}
POPCOUNT_DEFINE_PORTABLE(I32_POPCNT, u32)
POPCOUNT_DEFINE_PORTABLE(I64_POPCNT, u64)
#undef POPCOUNT_DEFINE_PORTABLE
#else
#define I32_CLZ(x) ((x) ? __builtin_clz(x) : 32)
#define I64_CLZ(x) ((x) ? __builtin_clzll(x) : 64)
#define I32_CTZ(x) ((x) ? __builtin_ctz(x) : 32)
#define I64_CTZ(x) ((x) ? __builtin_ctzll(x) : 64)
#define I32_POPCNT(x) (__builtin_popcount(x))
#define I64_POPCNT(x) (__builtin_popcountll(x))
#endif
#define DIV_S(ut, min, x, y) \
((UNLIKELY((y) == 0)) \
? TRAP(DIV_BY_ZERO) \
: (UNLIKELY((x) == min && (y) == -1)) ? TRAP(INT_OVERFLOW) \
: (ut)((x) / (y)))
#define REM_S(ut, min, x, y) \
((UNLIKELY((y) == 0)) \
? TRAP(DIV_BY_ZERO) \
: (UNLIKELY((x) == min && (y) == -1)) ? 0 : (ut)((x) % (y)))
#define I32_DIV_S(x, y) DIV_S(u32, INT32_MIN, (s32)x, (s32)y)
#define I64_DIV_S(x, y) DIV_S(u64, INT64_MIN, (s64)x, (s64)y)
#define I32_REM_S(x, y) REM_S(u32, INT32_MIN, (s32)x, (s32)y)
#define I64_REM_S(x, y) REM_S(u64, INT64_MIN, (s64)x, (s64)y)
#define DIVREM_U(op, x, y) \
((UNLIKELY((y) == 0)) ? TRAP(DIV_BY_ZERO) : ((x)op(y)))
#define DIV_U(x, y) DIVREM_U(/, x, y)
#define REM_U(x, y) DIVREM_U(%, x, y)
#define ROTL(x, y, mask) \
(((x) << ((y) & (mask))) | ((x) >> (((mask) - (y) + 1) & (mask))))
#define ROTR(x, y, mask) \
(((x) >> ((y) & (mask))) | ((x) << (((mask) - (y) + 1) & (mask))))
#define I32_ROTL(x, y) ROTL(x, y, 31)
#define I64_ROTL(x, y) ROTL(x, y, 63)
#define I32_ROTR(x, y) ROTR(x, y, 31)
#define I64_ROTR(x, y) ROTR(x, y, 63)
#define FMIN(x, y) \
((UNLIKELY((x) != (x))) \
? NAN \
: (UNLIKELY((y) != (y))) \
? NAN \
: (UNLIKELY((x) == 0 && (y) == 0)) ? (signbit(x) ? x : y) \
: (x < y) ? x : y)
#define FMAX(x, y) \
((UNLIKELY((x) != (x))) \
? NAN \
: (UNLIKELY((y) != (y))) \
? NAN \
: (UNLIKELY((x) == 0 && (y) == 0)) ? (signbit(x) ? y : x) \
: (x > y) ? x : y)
#define TRUNC_S(ut, st, ft, min, minop, max, x) \
((UNLIKELY((x) != (x))) \
? TRAP(INVALID_CONVERSION) \
: (UNLIKELY(!((x)minop(min) && (x) < (max)))) ? TRAP(INT_OVERFLOW) \
: (ut)(st)(x))
#define I32_TRUNC_S_F32(x) \
TRUNC_S(u32, s32, f32, (f32)INT32_MIN, >=, 2147483648.f, x)
#define I64_TRUNC_S_F32(x) \
TRUNC_S(u64, s64, f32, (f32)INT64_MIN, >=, (f32)INT64_MAX, x)
#define I32_TRUNC_S_F64(x) \
TRUNC_S(u32, s32, f64, -2147483649., >, 2147483648., x)
#define I64_TRUNC_S_F64(x) \
TRUNC_S(u64, s64, f64, (f64)INT64_MIN, >=, (f64)INT64_MAX, x)
#define TRUNC_U(ut, ft, max, x) \
((UNLIKELY((x) != (x))) \
? TRAP(INVALID_CONVERSION) \
: (UNLIKELY(!((x) > (ft)-1 && (x) < (max)))) ? TRAP(INT_OVERFLOW) \
: (ut)(x))
#define I32_TRUNC_U_F32(x) TRUNC_U(u32, f32, 4294967296.f, x)
#define I64_TRUNC_U_F32(x) TRUNC_U(u64, f32, (f32)UINT64_MAX, x)
#define I32_TRUNC_U_F64(x) TRUNC_U(u32, f64, 4294967296., x)
#define I64_TRUNC_U_F64(x) TRUNC_U(u64, f64, (f64)UINT64_MAX, x)
#define TRUNC_SAT_S(ut, st, ft, min, smin, minop, max, smax, x) \
((UNLIKELY((x) != (x))) \
? 0 \
: (UNLIKELY(!((x)minop(min)))) \
? smin \
: (UNLIKELY(!((x) < (max)))) ? smax : (ut)(st)(x))
#define I32_TRUNC_SAT_S_F32(x) \
TRUNC_SAT_S(u32, s32, f32, (f32)INT32_MIN, INT32_MIN, >=, 2147483648.f, \
INT32_MAX, x)
#define I64_TRUNC_SAT_S_F32(x) \
TRUNC_SAT_S(u64, s64, f32, (f32)INT64_MIN, INT64_MIN, >=, (f32)INT64_MAX, \
INT64_MAX, x)
#define I32_TRUNC_SAT_S_F64(x) \
TRUNC_SAT_S(u32, s32, f64, -2147483649., INT32_MIN, >, 2147483648., \
INT32_MAX, x)
#define I64_TRUNC_SAT_S_F64(x) \
TRUNC_SAT_S(u64, s64, f64, (f64)INT64_MIN, INT64_MIN, >=, (f64)INT64_MAX, \
INT64_MAX, x)
#define TRUNC_SAT_U(ut, ft, max, smax, x) \
((UNLIKELY((x) != (x))) ? 0 \
: (UNLIKELY(!((x) > (ft)-1))) \
? 0 \
: (UNLIKELY(!((x) < (max)))) ? smax : (ut)(x))
#define I32_TRUNC_SAT_U_F32(x) \
TRUNC_SAT_U(u32, f32, 4294967296.f, UINT32_MAX, x)
#define I64_TRUNC_SAT_U_F32(x) \
TRUNC_SAT_U(u64, f32, (f32)UINT64_MAX, UINT64_MAX, x)
#define I32_TRUNC_SAT_U_F64(x) TRUNC_SAT_U(u32, f64, 4294967296., UINT32_MAX, x)
#define I64_TRUNC_SAT_U_F64(x) \
TRUNC_SAT_U(u64, f64, (f64)UINT64_MAX, UINT64_MAX, x)
#define DEFINE_REINTERPRET(name, t1, t2) \
static inline t2 name(t1 x) { \
t2 result; \
wasm_rt_memcpy(&result, &x, sizeof(result)); \
return result; \
}
DEFINE_REINTERPRET(f32_reinterpret_i32, u32, f32)
DEFINE_REINTERPRET(i32_reinterpret_f32, f32, u32)
DEFINE_REINTERPRET(f64_reinterpret_i64, u64, f64)
DEFINE_REINTERPRET(i64_reinterpret_f64, f64, u64)
static float quiet_nanf(float x) {
uint32_t tmp;
wasm_rt_memcpy(&tmp, &x, 4);
tmp |= 0x7fc00000lu;
wasm_rt_memcpy(&x, &tmp, 4);
return x;
}
static double quiet_nan(double x) {
uint64_t tmp;
wasm_rt_memcpy(&tmp, &x, 8);
tmp |= 0x7ff8000000000000llu;
wasm_rt_memcpy(&x, &tmp, 8);
return x;
}
static double wasm_quiet(double x) {
if (UNLIKELY(isnan(x))) {
return quiet_nan(x);
}
return x;
}
static float wasm_quietf(float x) {
if (UNLIKELY(isnan(x))) {
return quiet_nanf(x);
}
return x;
}
static double wasm_floor(double x) {
if (UNLIKELY(isnan(x))) {
return quiet_nan(x);
}
return floor(x);
}
static float wasm_floorf(float x) {
if (UNLIKELY(isnan(x))) {
return quiet_nanf(x);
}
return floorf(x);
}
static double wasm_ceil(double x) {
if (UNLIKELY(isnan(x))) {
return quiet_nan(x);
}
return ceil(x);
}
static float wasm_ceilf(float x) {
if (UNLIKELY(isnan(x))) {
return quiet_nanf(x);
}
return ceilf(x);
}
static double wasm_trunc(double x) {
if (UNLIKELY(isnan(x))) {
return quiet_nan(x);
}
return trunc(x);
}
static float wasm_truncf(float x) {
if (UNLIKELY(isnan(x))) {
return quiet_nanf(x);
}
return truncf(x);
}
static float wasm_nearbyintf(float x) {
if (UNLIKELY(isnan(x))) {
return quiet_nanf(x);
}
return nearbyintf(x);
}
static double wasm_nearbyint(double x) {
if (UNLIKELY(isnan(x))) {
return quiet_nan(x);
}
return nearbyint(x);
}
static float wasm_fabsf(float x) {
if (UNLIKELY(isnan(x))) {
uint32_t tmp;
wasm_rt_memcpy(&tmp, &x, 4);
tmp = tmp & ~(1UL << 31);
wasm_rt_memcpy(&x, &tmp, 4);
return x;
}
return fabsf(x);
}
static double wasm_fabs(double x) {
if (UNLIKELY(isnan(x))) {
uint64_t tmp;
wasm_rt_memcpy(&tmp, &x, 8);
tmp = tmp & ~(1ULL << 63);
wasm_rt_memcpy(&x, &tmp, 8);
return x;
}
return fabs(x);
}
static double wasm_sqrt(double x) {
if (UNLIKELY(isnan(x))) {
return quiet_nan(x);
}
return sqrt(x);
}
static float wasm_sqrtf(float x) {
if (UNLIKELY(isnan(x))) {
return quiet_nanf(x);
}
return sqrtf(x);
}
static inline void memory_fill(wasm_rt_memory_t* mem, u32 d, u32 val, u32 n) {
RANGE_CHECK(mem, d, n);
memset(MEM_ADDR(mem, d, n), val, n);
}
static inline void memory_copy(wasm_rt_memory_t* dest,
const wasm_rt_memory_t* src,
u32 dest_addr,
u32 src_addr,
u32 n) {
RANGE_CHECK(dest, dest_addr, n);
RANGE_CHECK(src, src_addr, n);
memmove(MEM_ADDR(dest, dest_addr, n), MEM_ADDR(src, src_addr, n), n);
}
static inline void memory_init(wasm_rt_memory_t* dest,
const u8* src,
u32 src_size,
u32 dest_addr,
u32 src_addr,
u32 n) {
if (UNLIKELY(src_addr + (uint64_t)n > src_size))
TRAP(OOB);
LOAD_DATA((*dest), dest_addr, src + src_addr, n);
}
typedef struct {
enum { RefFunc, RefNull, GlobalGet } expr_type;
wasm_rt_func_type_t type;
wasm_rt_function_ptr_t func;
wasm_rt_tailcallee_t func_tailcallee;
size_t module_offset;
} wasm_elem_segment_expr_t;
static inline void funcref_table_init(wasm_rt_funcref_table_t* dest,
const wasm_elem_segment_expr_t* src,
u32 src_size,
u32 dest_addr,
u32 src_addr,
u32 n,
void* module_instance) {
if (UNLIKELY(src_addr + (uint64_t)n > src_size))
TRAP(OOB);
if (UNLIKELY(dest_addr + (uint64_t)n > dest->size))
TRAP(OOB);
for (u32 i = 0; i < n; i++) {
const wasm_elem_segment_expr_t* const src_expr = &src[src_addr + i];
wasm_rt_funcref_t* const dest_val = &(dest->data[dest_addr + i]);
switch (src_expr->expr_type) {
case RefFunc:
*dest_val = (wasm_rt_funcref_t){
src_expr->type, src_expr->func, src_expr->func_tailcallee,
(char*)module_instance + src_expr->module_offset};
break;
case RefNull:
*dest_val = wasm_rt_funcref_null_value;
break;
case GlobalGet:
*dest_val = **(wasm_rt_funcref_t**)((char*)module_instance +
src_expr->module_offset);
break;
}
}
}
// Currently wasm2c only supports initializing externref tables with ref.null.
static inline void externref_table_init(wasm_rt_externref_table_t* dest,
u32 src_size,
u32 dest_addr,
u32 src_addr,
u32 n) {
if (UNLIKELY(src_addr + (uint64_t)n > src_size))
TRAP(OOB);