Revision control

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Code related to the style sharing cache, an optimization that allows similar
//! nodes to share style without having to run selector matching twice.
//!
//! The basic setup is as follows.  We have an LRU cache of style sharing
//! candidates.  When we try to style a target element, we first check whether
//! we can quickly determine that styles match something in this cache, and if
//! so we just use the cached style information.  This check is done with a
//! StyleBloom filter set up for the target element, which may not be a correct
//! state for the cached candidate element if they're cousins instead of
//! siblings.
//!
//! The complicated part is determining that styles match.  This is subject to
//! the following constraints:
//!
//! 1) The target and candidate must be inheriting the same styles.
//! 2) The target and candidate must have exactly the same rules matching them.
//! 3) The target and candidate must have exactly the same non-selector-based
//!    style information (inline styles, presentation hints).
//! 4) The target and candidate must have exactly the same rules matching their
//!    pseudo-elements, because an element's style data points to the style
//!    data for its pseudo-elements.
//!
//! These constraints are satisfied in the following ways:
//!
//! * We check that the parents of the target and the candidate have the same
//!   computed style.  This addresses constraint 1.
//!
//! * We check that the target and candidate have the same inline style and
//!   presentation hint declarations.  This addresses constraint 3.
//!
//! * We ensure that a target matches a candidate only if they have the same
//!   matching result for all selectors that target either elements or the
//!   originating elements of pseudo-elements.  This addresses constraint 4
//!   (because it prevents a target that has pseudo-element styles from matching
//!   a candidate that has different pseudo-element styles) as well as
//!   constraint 2.
//!
//! The actual checks that ensure that elements match the same rules are
//! conceptually split up into two pieces.  First, we do various checks on
//! elements that make sure that the set of possible rules in all selector maps
//! in the stylist (for normal styling and for pseudo-elements) that might match
//! the two elements is the same.  For example, we enforce that the target and
//! candidate must have the same localname and namespace.  Second, we have a
//! selector map of "revalidation selectors" that the stylist maintains that we
//! actually match against the target and candidate and then check whether the
//! two sets of results were the same.  Due to the up-front selector map checks,
//! we know that the target and candidate will be matched against the same exact
//! set of revalidation selectors, so the match result arrays can be compared
//! directly.
//!
//! It's very important that a selector be added to the set of revalidation
//! selectors any time there are two elements that could pass all the up-front
//! checks but match differently against some ComplexSelector in the selector.
//! If that happens, then they can have descendants that might themselves pass
//! the up-front checks but would have different matching results for the
//! selector in question.  In this case, "descendants" includes pseudo-elements,
//! so there is a single selector map of revalidation selectors that includes
//! both selectors targeting elements and selectors targeting pseudo-element
//! originating elements.  We ensure that the pseudo-element parts of all these
//! selectors are effectively stripped off, so that matching them all against
//! elements makes sense.

use Atom;
use applicable_declarations::ApplicableDeclarationBlock;
use atomic_refcell::{AtomicRefCell, AtomicRefMut};
use bloom::StyleBloom;
use context::{SelectorFlagsMap, SharedStyleContext, StyleContext};
use dom::{SendElement, TElement};
use matching::MatchMethods;
use owning_ref::OwningHandle;
use properties::ComputedValues;
use rule_tree::StrongRuleNode;
use selectors::NthIndexCache;
use selectors::matching::{ElementSelectorFlags, VisitedHandlingMode};
use servo_arc::{Arc, NonZeroPtrMut};
use smallbitvec::SmallBitVec;
use smallvec::SmallVec;
use std::marker::PhantomData;
use std::mem;
use std::ops::Deref;
use style_resolver::{PrimaryStyle, ResolvedElementStyles};
use stylist::Stylist;
use uluru::{Entry, LRUCache};

mod checks;

/// The amount of nodes that the style sharing candidate cache should hold at
/// most.  We'd somewhat like 32, but ArrayDeque only implements certain backing
/// store sizes.  A cache size of 32 would mean a backing store of 33, but
/// that's not an implemented size: we can do 32 or 40.
///
/// The cache size was chosen by measuring style sharing and resulting
/// performance on a few pages; sizes up to about 32 were giving good sharing
/// improvements (e.g. 3x fewer styles having to be resolved than at size 8) and
/// slight performance improvements.  Sizes larger than 32 haven't really been
/// tested.
pub const SHARING_CACHE_SIZE: usize = 31;
const SHARING_CACHE_BACKING_STORE_SIZE: usize = SHARING_CACHE_SIZE + 1;

/// Controls whether the style sharing cache is used.
#[derive(Clone, Copy, PartialEq)]
pub enum StyleSharingBehavior {
    /// Style sharing allowed.
    Allow,
    /// Style sharing disallowed.
    Disallow,
}

/// Opaque pointer type to compare ComputedValues identities.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct OpaqueComputedValues(NonZeroPtrMut<()>);
impl OpaqueComputedValues {
    fn from(cv: &ComputedValues) -> Self {
        let p = NonZeroPtrMut::new(cv as *const ComputedValues as *const () as *mut ());
        OpaqueComputedValues(p)
    }

    fn eq(&self, cv: &ComputedValues) -> bool {
        Self::from(cv) == *self
    }
}

/// Some data we want to avoid recomputing all the time while trying to share
/// style.
#[derive(Debug, Default)]
pub struct ValidationData {
    /// The class list of this element.
    ///
    /// TODO(emilio): See if it's worth to sort them, or doing something else in
    /// a similar fashion as what Boris is doing for the ID attribute.
    class_list: Option<SmallVec<[Atom; 5]>>,

    /// The list of presentational attributes of the element.
    pres_hints: Option<SmallVec<[ApplicableDeclarationBlock; 5]>>,

    /// The pointer identity of the parent ComputedValues.
    parent_style_identity: Option<OpaqueComputedValues>,

    /// The cached result of matching this entry against the revalidation
    /// selectors.
    revalidation_match_results: Option<SmallBitVec>,
}

impl ValidationData {
    /// Move the cached data to a new instance, and return it.
    pub fn take(&mut self) -> Self {
        mem::replace(self, Self::default())
    }

    /// Get or compute the list of presentational attributes associated with
    /// this element.
    pub fn pres_hints<E>(&mut self, element: E) -> &[ApplicableDeclarationBlock]
    where
        E: TElement,
    {
        self.pres_hints.get_or_insert_with(|| {
            let mut pres_hints = SmallVec::new();
            element.synthesize_presentational_hints_for_legacy_attributes(
                VisitedHandlingMode::AllLinksUnvisited,
                &mut pres_hints,
            );
            pres_hints
        })
    }

    /// Get or compute the class-list associated with this element.
    pub fn class_list<E>(&mut self, element: E) -> &[Atom]
    where
        E: TElement,
    {
        self.class_list.get_or_insert_with(|| {
            let mut class_list = SmallVec::<[Atom; 5]>::new();
            element.each_class(|c| class_list.push(c.clone()));
            // Assuming there are a reasonable number of classes (we use the
            // inline capacity as "reasonable number"), sort them to so that
            // we don't mistakenly reject sharing candidates when one element
            // has "foo bar" and the other has "bar foo".
            if !class_list.spilled() {
                class_list.sort_by(|a, b| a.get_hash().cmp(&b.get_hash()));
            }
            class_list
        })
    }

    /// Get or compute the parent style identity.
    pub fn parent_style_identity<E>(&mut self, el: E) -> OpaqueComputedValues
    where
        E: TElement,
    {
        self.parent_style_identity
            .get_or_insert_with(|| {
                let parent = el.inheritance_parent().unwrap();
                let values =
                    OpaqueComputedValues::from(parent.borrow_data().unwrap().styles.primary());
                values
            })
            .clone()
    }

    /// Computes the revalidation results if needed, and returns it.
    /// Inline so we know at compile time what bloom_known_valid is.
    #[inline]
    fn revalidation_match_results<E, F>(
        &mut self,
        element: E,
        stylist: &Stylist,
        bloom: &StyleBloom<E>,
        nth_index_cache: &mut NthIndexCache,
        bloom_known_valid: bool,
        flags_setter: &mut F,
    ) -> &SmallBitVec
    where
        E: TElement,
        F: FnMut(&E, ElementSelectorFlags),
    {
        self.revalidation_match_results.get_or_insert_with(|| {
            // The bloom filter may already be set up for our element.
            // If it is, use it.  If not, we must be in a candidate
            // (i.e. something in the cache), and the element is one
            // of our cousins, not a sibling.  In that case, we'll
            // just do revalidation selector matching without a bloom
            // filter, to avoid thrashing the filter.
            let bloom_to_use = if bloom_known_valid {
                debug_assert_eq!(bloom.current_parent(), element.traversal_parent());
                Some(bloom.filter())
            } else {
                if bloom.current_parent() == element.traversal_parent() {
                    Some(bloom.filter())
                } else {
                    None
                }
            };
            stylist.match_revalidation_selectors(
                element,
                bloom_to_use,
                nth_index_cache,
                flags_setter,
            )
        })
    }
}

/// Information regarding a style sharing candidate, that is, an entry in the
/// style sharing cache.
///
/// Note that this information is stored in TLS and cleared after the traversal,
/// and once here, the style information of the element is immutable, so it's
/// safe to access.
///
/// Important: If you change the members/layout here, You need to do the same for
/// FakeCandidate below.
#[derive(Debug)]
pub struct StyleSharingCandidate<E: TElement> {
    /// The element.
    element: E,
    validation_data: ValidationData,
}

struct FakeCandidate {
    _element: usize,
    _validation_data: ValidationData,
}

impl<E: TElement> Deref for StyleSharingCandidate<E> {
    type Target = E;

    fn deref(&self) -> &Self::Target {
        &self.element
    }
}

impl<E: TElement> StyleSharingCandidate<E> {
    /// Get the classlist of this candidate.
    fn class_list(&mut self) -> &[Atom] {
        self.validation_data.class_list(self.element)
    }

    /// Get the pres hints of this candidate.
    fn pres_hints(&mut self) -> &[ApplicableDeclarationBlock] {
        self.validation_data.pres_hints(self.element)
    }

    /// Get the parent style identity.
    fn parent_style_identity(&mut self) -> OpaqueComputedValues {
        self.validation_data.parent_style_identity(self.element)
    }

    /// Compute the bit vector of revalidation selector match results
    /// for this candidate.
    fn revalidation_match_results(
        &mut self,
        stylist: &Stylist,
        bloom: &StyleBloom<E>,
        nth_index_cache: &mut NthIndexCache,
    ) -> &SmallBitVec {
        self.validation_data.revalidation_match_results(
            self.element,
            stylist,
            bloom,
            nth_index_cache,
            /* bloom_known_valid = */ false,
            &mut |_, _| {},
        )
    }
}

impl<E: TElement> PartialEq<StyleSharingCandidate<E>> for StyleSharingCandidate<E> {
    fn eq(&self, other: &Self) -> bool {
        self.element == other.element
    }
}

/// An element we want to test against the style sharing cache.
pub struct StyleSharingTarget<E: TElement> {
    element: E,
    validation_data: ValidationData,
}

impl<E: TElement> Deref for StyleSharingTarget<E> {
    type Target = E;

    fn deref(&self) -> &Self::Target {
        &self.element
    }
}

impl<E: TElement> StyleSharingTarget<E> {
    /// Trivially construct a new StyleSharingTarget to test against the cache.
    pub fn new(element: E) -> Self {
        Self {
            element: element,
            validation_data: ValidationData::default(),
        }
    }

    fn class_list(&mut self) -> &[Atom] {
        self.validation_data.class_list(self.element)
    }

    /// Get the pres hints of this candidate.
    fn pres_hints(&mut self) -> &[ApplicableDeclarationBlock] {
        self.validation_data.pres_hints(self.element)
    }

    /// Get the parent style identity.
    fn parent_style_identity(&mut self) -> OpaqueComputedValues {
        self.validation_data.parent_style_identity(self.element)
    }

    fn revalidation_match_results(
        &mut self,
        stylist: &Stylist,
        bloom: &StyleBloom<E>,
        nth_index_cache: &mut NthIndexCache,
        selector_flags_map: &mut SelectorFlagsMap<E>,
    ) -> &SmallBitVec {
        // It's important to set the selector flags. Otherwise, if we succeed in
        // sharing the style, we may not set the slow selector flags for the
        // right elements (which may not necessarily be |element|), causing
        // missed restyles after future DOM mutations.
        //
        // Gecko's test_bug534804.html exercises this. A minimal testcase is:
        // <style> #e:empty + span { ... } </style>
        // <span id="e">
        //   <span></span>
        // </span>
        // <span></span>
        //
        // The style sharing cache will get a hit for the second span. When the
        // child span is subsequently removed from the DOM, missing selector
        // flags would cause us to miss the restyle on the second span.
        let element = self.element;
        let mut set_selector_flags = |el: &E, flags: ElementSelectorFlags| {
            element.apply_selector_flags(selector_flags_map, el, flags);
        };

        self.validation_data.revalidation_match_results(
            self.element,
            stylist,
            bloom,
            nth_index_cache,
            /* bloom_known_valid = */ true,
            &mut set_selector_flags,
        )
    }

    /// Attempts to share a style with another node.
    pub fn share_style_if_possible(
        &mut self,
        context: &mut StyleContext<E>,
    ) -> Option<ResolvedElementStyles> {
        let cache = &mut context.thread_local.sharing_cache;
        let shared_context = &context.shared;
        let selector_flags_map = &mut context.thread_local.selector_flags;
        let bloom_filter = &context.thread_local.bloom_filter;
        let nth_index_cache = &mut context.thread_local.nth_index_cache;

        if cache.dom_depth != bloom_filter.matching_depth() {
            debug!(
                "Can't share style, because DOM depth changed from {:?} to {:?}, element: {:?}",
                cache.dom_depth,
                bloom_filter.matching_depth(),
                self.element
            );
            return None;
        }
        debug_assert_eq!(
            bloom_filter.current_parent(),
            self.element.traversal_parent()
        );

        cache.share_style_if_possible(
            shared_context,
            selector_flags_map,
            bloom_filter,
            nth_index_cache,
            self,
        )
    }

    /// Gets the validation data used to match against this target, if any.
    pub fn take_validation_data(&mut self) -> ValidationData {
        self.validation_data.take()
    }
}

struct SharingCacheBase<Candidate> {
    entries: LRUCache<[Entry<Candidate>; SHARING_CACHE_BACKING_STORE_SIZE]>,
}

impl<Candidate> Default for SharingCacheBase<Candidate> {
    fn default() -> Self {
        Self {
            entries: LRUCache::default(),
        }
    }
}

impl<Candidate> SharingCacheBase<Candidate> {
    fn clear(&mut self) {
        self.entries.evict_all();
    }

    fn is_empty(&self) -> bool {
        self.entries.num_entries() == 0
    }
}

impl<E: TElement> SharingCache<E> {
    fn insert(&mut self, element: E, validation_data_holder: Option<&mut StyleSharingTarget<E>>) {
        let validation_data = match validation_data_holder {
            Some(v) => v.take_validation_data(),
            None => ValidationData::default(),
        };
        self.entries.insert(StyleSharingCandidate {
            element,
            validation_data,
        });
    }
}

/// Style sharing caches are are large allocations, so we store them in thread-local
/// storage such that they can be reused across style traversals. Ideally, we'd just
/// stack-allocate these buffers with uninitialized memory, but right now rustc can't
/// avoid memmoving the entire cache during setup, which gets very expensive. See
/// issues like [1] and [2].
///
/// Given that the cache stores entries of type TElement, we transmute to usize
/// before storing in TLS. This is safe as long as we make sure to empty the cache
/// before we let it go.
///
/// [1] https://github.com/rust-lang/rust/issues/42763
/// [2] https://github.com/rust-lang/rust/issues/13707
type SharingCache<E> = SharingCacheBase<StyleSharingCandidate<E>>;
type TypelessSharingCache = SharingCacheBase<FakeCandidate>;
type StoredSharingCache = Arc<AtomicRefCell<TypelessSharingCache>>;

thread_local!(static SHARING_CACHE_KEY: StoredSharingCache =
              Arc::new(AtomicRefCell::new(TypelessSharingCache::default())));

/// An LRU cache of the last few nodes seen, so that we can aggressively try to
/// reuse their styles.
///
/// Note that this cache is flushed every time we steal work from the queue, so
/// storing nodes here temporarily is safe.
pub struct StyleSharingCache<E: TElement> {
    /// The LRU cache, with the type cast away to allow persisting the allocation.
    cache_typeless: OwningHandle<StoredSharingCache, AtomicRefMut<'static, TypelessSharingCache>>,
    /// Bind this structure to the lifetime of E, since that's what we effectively store.
    marker: PhantomData<SendElement<E>>,
    /// The DOM depth we're currently at.  This is used as an optimization to
    /// clear the cache when we change depths, since we know at that point
    /// nothing in the cache will match.
    dom_depth: usize,
}

impl<E: TElement> Drop for StyleSharingCache<E> {
    fn drop(&mut self) {
        self.clear();
    }
}

impl<E: TElement> StyleSharingCache<E> {
    #[allow(dead_code)]
    fn cache(&self) -> &SharingCache<E> {
        let base: &TypelessSharingCache = &*self.cache_typeless;
        unsafe { mem::transmute(base) }
    }

    fn cache_mut(&mut self) -> &mut SharingCache<E> {
        let base: &mut TypelessSharingCache = &mut *self.cache_typeless;
        unsafe { mem::transmute(base) }
    }

    /// Create a new style sharing candidate cache.

    // Forced out of line to limit stack frame sizes after extra inlining from
    // https://github.com/rust-lang/rust/pull/43931
    //
    // See https://github.com/servo/servo/pull/18420#issuecomment-328769322
    #[inline(never)]
    pub fn new() -> Self {
        assert_eq!(
            mem::size_of::<SharingCache<E>>(),
            mem::size_of::<TypelessSharingCache>()
        );
        assert_eq!(
            mem::align_of::<SharingCache<E>>(),
            mem::align_of::<TypelessSharingCache>()
        );
        let cache_arc = SHARING_CACHE_KEY.with(|c| c.clone());
        let cache =
            OwningHandle::new_with_fn(cache_arc, |x| unsafe { x.as_ref() }.unwrap().borrow_mut());
        debug_assert!(cache.is_empty());

        StyleSharingCache {
            cache_typeless: cache,
            marker: PhantomData,
            dom_depth: 0,
        }
    }

    /// Tries to insert an element in the style sharing cache.
    ///
    /// Fails if we know it should never be in the cache.
    ///
    /// NB: We pass a source for the validation data, rather than the data itself,
    /// to avoid memmoving at each function call. See rust issue #42763.
    pub fn insert_if_possible(
        &mut self,
        element: &E,
        style: &PrimaryStyle,
        validation_data_holder: Option<&mut StyleSharingTarget<E>>,
        dom_depth: usize,
    ) {
        let parent = match element.traversal_parent() {
            Some(element) => element,
            None => {
                debug!("Failing to insert to the cache: no parent element");
                return;
            },
        };

        if element.is_native_anonymous() {
            debug!("Failing to insert into the cache: NAC");
            return;
        }

        // We can't share style across shadow hosts right now, because they may
        // match different :host rules.
        //
        // TODO(emilio): We could share across the ones that don't have :host
        // rules or have the same.
        if element.shadow_root().is_some() {
            debug!("Failing to insert into the cache: Shadow Host");
            return;
        }

        // If the element has running animations, we can't share style.
        //
        // This is distinct from the specifies_{animations,transitions} check below,
        // because:
        //   * Animations can be triggered directly via the Web Animations API.
        //   * Our computed style can still be affected by animations after we no
        //     longer match any animation rules, since removing animations involves
        //     a sequential task and an additional traversal.
        if element.has_animations() {
            debug!("Failing to insert to the cache: running animations");
            return;
        }

        // In addition to the above running animations check, we also need to
        // check CSS animation and transition styles since it's possible that
        // we are about to create CSS animations/transitions.
        //
        // These are things we don't check in the candidate match because they
        // are either uncommon or expensive.
        let box_style = style.style().get_box();
        if box_style.specifies_transitions() {
            debug!("Failing to insert to the cache: transitions");
            return;
        }

        if box_style.specifies_animations() {
            debug!("Failing to insert to the cache: animations");
            return;
        }

        debug!(
            "Inserting into cache: {:?} with parent {:?}",
            element, parent
        );

        if self.dom_depth != dom_depth {
            debug!(
                "Clearing cache because depth changed from {:?} to {:?}, element: {:?}",
                self.dom_depth, dom_depth, element
            );
            self.clear();
            self.dom_depth = dom_depth;
        }
        self.cache_mut().insert(*element, validation_data_holder);
    }

    /// Clear the style sharing candidate cache.
    pub fn clear(&mut self) {
        self.cache_mut().clear();
    }

    /// Attempts to share a style with another node.
    fn share_style_if_possible(
        &mut self,
        shared_context: &SharedStyleContext,
        selector_flags_map: &mut SelectorFlagsMap<E>,
        bloom_filter: &StyleBloom<E>,
        nth_index_cache: &mut NthIndexCache,
        target: &mut StyleSharingTarget<E>,
    ) -> Option<ResolvedElementStyles> {
        if shared_context.options.disable_style_sharing_cache {
            debug!(
                "{:?} Cannot share style: style sharing cache disabled",
                target.element
            );
            return None;
        }

        if target.inheritance_parent().is_none() {
            debug!(
                "{:?} Cannot share style: element has no parent",
                target.element
            );
            return None;
        }

        if target.is_native_anonymous() {
            debug!("{:?} Cannot share style: NAC", target.element);
            return None;
        }

        self.cache_mut().entries.lookup(|candidate| {
            Self::test_candidate(
                target,
                candidate,
                &shared_context,
                bloom_filter,
                nth_index_cache,
                selector_flags_map,
            )
        })
    }

    fn test_candidate(
        target: &mut StyleSharingTarget<E>,
        candidate: &mut StyleSharingCandidate<E>,
        shared: &SharedStyleContext,
        bloom: &StyleBloom<E>,
        nth_index_cache: &mut NthIndexCache,
        selector_flags_map: &mut SelectorFlagsMap<E>,
    ) -> Option<ResolvedElementStyles> {
        debug_assert!(!target.is_native_anonymous());

        // Check that we have the same parent, or at least that the parents
        // share styles and permit sharing across their children. The latter
        // check allows us to share style between cousins if the parents
        // shared style.
        if !checks::parents_allow_sharing(target, candidate) {
            trace!("Miss: Parent");
            return None;
        }

        if target.local_name() != candidate.element.local_name() {
            trace!("Miss: Local Name");
            return None;
        }

        if target.namespace() != candidate.element.namespace() {
            trace!("Miss: Namespace");
            return None;
        }

        // We do not ignore visited state here, because Gecko needs to store
        // extra bits on visited styles, so these contexts cannot be shared.
        if target.element.state() != candidate.state() {
            trace!("Miss: User and Author State");
            return None;
        }

        if target.is_link() != candidate.element.is_link() {
            trace!("Miss: Link");
            return None;
        }

        // If two elements belong to different shadow trees, different rules may
        // apply to them, from the respective trees.
        if target.element.containing_shadow() != candidate.element.containing_shadow() {
            trace!("Miss: Different containing shadow roots");
            return None;
        }

        // Note that in theory we shouldn't need this XBL check. However, XBL is
        // absolutely broken in all sorts of ways.
        //
        // A style change that changes which XBL binding applies to an element
        // arrives there, with the element still having the old prototype
        // binding attached. And thus we try to match revalidation selectors
        // with the old XBL binding, because we can't look at the new ones of
        // course. And that causes us to revalidate with the wrong selectors and
        // hit assertions.
        //
        // Other than this, we don't need anything else like the containing XBL
        // binding parent or what not, since two elements with different XBL
        // bindings will necessarily end up with different style.
        if !target
            .element
            .has_same_xbl_proto_binding_as(candidate.element)
        {
            trace!("Miss: Different proto bindings");
            return None;
        }

        // If the elements are not assigned to the same slot they could match
        // different ::slotted() rules in the slot scope.
        //
        // If two elements are assigned to different slots, even within the same
        // shadow root, they could match different rules, due to the slot being
        // assigned to yet another slot in another shadow root.
        if target.element.assigned_slot() != candidate.element.assigned_slot() {
            // TODO(emilio): We could have a look at whether the shadow roots
            // actually have slotted rules and such.
            trace!("Miss: Different assigned slots");
            return None;
        }

        if target.element.shadow_root().is_some() {
            trace!("Miss: Shadow host");
            return None;
        }

        if target.matches_user_and_author_rules() !=
            candidate.element.matches_user_and_author_rules()
        {
            trace!("Miss: User and Author Rules");
            return None;
        }

        // It's possible that there are no styles for either id.
        let may_match_different_id_rules =
            checks::may_match_different_id_rules(shared, target.element, candidate.element);

        if may_match_different_id_rules {
            trace!("Miss: ID Attr");
            return None;
        }

        if !checks::have_same_style_attribute(target, candidate) {
            trace!("Miss: Style Attr");
            return None;
        }

        if !checks::have_same_class(target, candidate) {
            trace!("Miss: Class");
            return None;
        }

        if !checks::have_same_presentational_hints(target, candidate) {
            trace!("Miss: Pres Hints");
            return None;
        }

        if !checks::revalidate(
            target,
            candidate,
            shared,
            bloom,
            nth_index_cache,
            selector_flags_map,
        ) {
            trace!("Miss: Revalidation");
            return None;
        }

        debug_assert!(target.has_current_styles_for_traversal(
            &candidate.element.borrow_data().unwrap(),
            shared.traversal_flags,
        ));

        debug!(
            "Sharing allowed between {:?} and {:?}",
            target.element, candidate.element
        );
        Some(candidate.element.borrow_data().unwrap().share_styles())
    }

    /// Attempts to find an element in the cache with the given primary rule node and parent.
    pub fn lookup_by_rules(
        &mut self,
        shared_context: &SharedStyleContext,
        inherited: &ComputedValues,
        rules: &StrongRuleNode,
        visited_rules: Option<&StrongRuleNode>,
        target: E,
    ) -> Option<PrimaryStyle> {
        if shared_context.options.disable_style_sharing_cache {
            return None;
        }

        self.cache_mut().entries.lookup(|candidate| {
            debug_assert_ne!(candidate.element, target);
            if !candidate.parent_style_identity().eq(inherited) {
                return None;
            }
            let data = candidate.element.borrow_data().unwrap();
            let style = data.styles.primary();
            if style.rules.as_ref() != Some(&rules) {
                return None;
            }
            if style.visited_rules() != visited_rules {
                return None;
            }

            // Rule nodes and styles are computed independent of the element's
            // actual visitedness, but at the end of the cascade (in
            // `adjust_for_visited`) we do store the visitedness as a flag in
            // style.  (This is a subtle change from initial visited work that
            // landed when computed values were fused, see
            // https://bugzilla.mozilla.org/show_bug.cgi?id=1381635.)
            // So at the moment, we need to additionally compare visitedness,
            // since that is not accounted for by rule nodes alone.
            // FIXME(jryans): This seems like it breaks the constant time
            // requirements of visited, assuming we get a cache hit on only one
            // of unvisited vs. visited.
            if target.is_visited_link() != candidate.element.is_visited_link() {
                return None;
            }

            Some(data.share_primary_style())
        })
    }
}