Revision control

Line Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mplogic.h"
#include "mpi-priv.h"

const mp_digit mp_gf2m_sqr_tb[16] =
    {
      0, 1, 4, 5, 16, 17, 20, 21,
      64, 65, 68, 69, 80, 81, 84, 85
    };

/* Multiply two binary polynomials mp_digits a, b.
 * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
 * Output in two mp_digits rh, rl.
 */
#if MP_DIGIT_BITS == 32
void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
    register mp_digit h, l, s;
    mp_digit tab[8], top2b = a >> 30;
    register mp_digit a1, a2, a4;

    a1 = a & (0x3FFFFFFF);
    a2 = a1 << 1;
    a4 = a2 << 1;

    tab[0] = 0;
    tab[1] = a1;
    tab[2] = a2;
    tab[3] = a1 ^ a2;
    tab[4] = a4;
    tab[5] = a1 ^ a4;
    tab[6] = a2 ^ a4;
    tab[7] = a1 ^ a2 ^ a4;

    s = tab[b & 0x7];
    l = s;
    s = tab[b >> 3 & 0x7];
    l ^= s << 3;
    h = s >> 29;
    s = tab[b >> 6 & 0x7];
    l ^= s << 6;
    h ^= s >> 26;
    s = tab[b >> 9 & 0x7];
    l ^= s << 9;
    h ^= s >> 23;
    s = tab[b >> 12 & 0x7];
    l ^= s << 12;
    h ^= s >> 20;
    s = tab[b >> 15 & 0x7];
    l ^= s << 15;
    h ^= s >> 17;
    s = tab[b >> 18 & 0x7];
    l ^= s << 18;
    h ^= s >> 14;
    s = tab[b >> 21 & 0x7];
    l ^= s << 21;
    h ^= s >> 11;
    s = tab[b >> 24 & 0x7];
    l ^= s << 24;
    h ^= s >> 8;
    s = tab[b >> 27 & 0x7];
    l ^= s << 27;
    h ^= s >> 5;
    s = tab[b >> 30];
    l ^= s << 30;
    h ^= s >> 2;

    /* compensate for the top two bits of a */

    if (top2b & 01) {
        l ^= b << 30;
        h ^= b >> 2;
    }
    if (top2b & 02) {
        l ^= b << 31;
        h ^= b >> 1;
    }

    *rh = h;
    *rl = l;
}
#else
void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
    register mp_digit h, l, s;
    mp_digit tab[16], top3b = a >> 61;
    register mp_digit a1, a2, a4, a8;

    a1 = a & (0x1FFFFFFFFFFFFFFFULL);
    a2 = a1 << 1;
    a4 = a2 << 1;
    a8 = a4 << 1;
    tab[0] = 0;
    tab[1] = a1;
    tab[2] = a2;
    tab[3] = a1 ^ a2;
    tab[4] = a4;
    tab[5] = a1 ^ a4;
    tab[6] = a2 ^ a4;
    tab[7] = a1 ^ a2 ^ a4;
    tab[8] = a8;
    tab[9] = a1 ^ a8;
    tab[10] = a2 ^ a8;
    tab[11] = a1 ^ a2 ^ a8;
    tab[12] = a4 ^ a8;
    tab[13] = a1 ^ a4 ^ a8;
    tab[14] = a2 ^ a4 ^ a8;
    tab[15] = a1 ^ a2 ^ a4 ^ a8;

    s = tab[b & 0xF];
    l = s;
    s = tab[b >> 4 & 0xF];
    l ^= s << 4;
    h = s >> 60;
    s = tab[b >> 8 & 0xF];
    l ^= s << 8;
    h ^= s >> 56;
    s = tab[b >> 12 & 0xF];
    l ^= s << 12;
    h ^= s >> 52;
    s = tab[b >> 16 & 0xF];
    l ^= s << 16;
    h ^= s >> 48;
    s = tab[b >> 20 & 0xF];
    l ^= s << 20;
    h ^= s >> 44;
    s = tab[b >> 24 & 0xF];
    l ^= s << 24;
    h ^= s >> 40;
    s = tab[b >> 28 & 0xF];
    l ^= s << 28;
    h ^= s >> 36;
    s = tab[b >> 32 & 0xF];
    l ^= s << 32;
    h ^= s >> 32;
    s = tab[b >> 36 & 0xF];
    l ^= s << 36;
    h ^= s >> 28;
    s = tab[b >> 40 & 0xF];
    l ^= s << 40;
    h ^= s >> 24;
    s = tab[b >> 44 & 0xF];
    l ^= s << 44;
    h ^= s >> 20;
    s = tab[b >> 48 & 0xF];
    l ^= s << 48;
    h ^= s >> 16;
    s = tab[b >> 52 & 0xF];
    l ^= s << 52;
    h ^= s >> 12;
    s = tab[b >> 56 & 0xF];
    l ^= s << 56;
    h ^= s >> 8;
    s = tab[b >> 60];
    l ^= s << 60;
    h ^= s >> 4;

    /* compensate for the top three bits of a */

    if (top3b & 01) {
        l ^= b << 61;
        h ^= b >> 3;
    }
    if (top3b & 02) {
        l ^= b << 62;
        h ^= b >> 2;
    }
    if (top3b & 04) {
        l ^= b << 63;
        h ^= b >> 1;
    }

    *rh = h;
    *rl = l;
}
#endif

/* Compute xor-multiply of two binary polynomials  (a1, a0) x (b1, b0)
 * result is a binary polynomial in 4 mp_digits r[4].
 * The caller MUST ensure that r has the right amount of space allocated.
 */
void
s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
           const mp_digit b0)
{
    mp_digit m1, m0;
    /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
    s_bmul_1x1(r + 3, r + 2, a1, b1);
    s_bmul_1x1(r + 1, r, a0, b0);
    s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
    /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
    r[2] ^= m1 ^ r[1] ^ r[3];            /* h0 ^= m1 ^ l1 ^ h1; */
    r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
}

/* Compute xor-multiply of two binary polynomials  (a2, a1, a0) x (b2, b1, b0)
 * result is a binary polynomial in 6 mp_digits r[6].
 * The caller MUST ensure that r has the right amount of space allocated.
 */
void
s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
           const mp_digit b2, const mp_digit b1, const mp_digit b0)
{
    mp_digit zm[4];

    s_bmul_1x1(r + 5, r + 4, a2, b2);         /* fill top 2 words */
    s_bmul_2x2(zm, a1, a2 ^ a0, b1, b2 ^ b0); /* fill middle 4 words */
    s_bmul_2x2(r, a1, a0, b1, b0);            /* fill bottom 4 words */

    zm[3] ^= r[3];
    zm[2] ^= r[2];
    zm[1] ^= r[1] ^ r[5];
    zm[0] ^= r[0] ^ r[4];

    r[5] ^= zm[3];
    r[4] ^= zm[2];
    r[3] ^= zm[1];
    r[2] ^= zm[0];
}

/* Compute xor-multiply of two binary polynomials  (a3, a2, a1, a0) x (b3, b2, b1, b0)
 * result is a binary polynomial in 8 mp_digits r[8].
 * The caller MUST ensure that r has the right amount of space allocated.
 */
void
s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
           const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
           const mp_digit b0)
{
    mp_digit zm[4];

    s_bmul_2x2(r + 4, a3, a2, b3, b2);                  /* fill top 4 words */
    s_bmul_2x2(zm, a3 ^ a1, a2 ^ a0, b3 ^ b1, b2 ^ b0); /* fill middle 4 words */
    s_bmul_2x2(r, a1, a0, b1, b0);                      /* fill bottom 4 words */

    zm[3] ^= r[3] ^ r[7];
    zm[2] ^= r[2] ^ r[6];
    zm[1] ^= r[1] ^ r[5];
    zm[0] ^= r[0] ^ r[4];

    r[5] ^= zm[3];
    r[4] ^= zm[2];
    r[3] ^= zm[1];
    r[2] ^= zm[0];
}

/* Compute addition of two binary polynomials a and b,
 * store result in c; c could be a or b, a and b could be equal;
 * c is the bitwise XOR of a and b.
 */
mp_err
mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
{
    mp_digit *pa, *pb, *pc;
    mp_size ix;
    mp_size used_pa, used_pb;
    mp_err res = MP_OKAY;

    /* Add all digits up to the precision of b.  If b had more
     * precision than a initially, swap a, b first
     */
    if (MP_USED(a) >= MP_USED(b)) {
        pa = MP_DIGITS(a);
        pb = MP_DIGITS(b);
        used_pa = MP_USED(a);
        used_pb = MP_USED(b);
    } else {
        pa = MP_DIGITS(b);
        pb = MP_DIGITS(a);
        used_pa = MP_USED(b);
        used_pb = MP_USED(a);
    }

    /* Make sure c has enough precision for the output value */
    MP_CHECKOK(s_mp_pad(c, used_pa));

    /* Do word-by-word xor */
    pc = MP_DIGITS(c);
    for (ix = 0; ix < used_pb; ix++) {
        (*pc++) = (*pa++) ^ (*pb++);
    }

    /* Finish the rest of digits until we're actually done */
    for (; ix < used_pa; ++ix) {
        *pc++ = *pa++;
    }

    MP_USED(c) = used_pa;
    MP_SIGN(c) = ZPOS;
    s_mp_clamp(c);

CLEANUP:
    return res;
}

#define s_mp_div2(a) MP_CHECKOK(mpl_rsh((a), (a), 1));

/* Compute binary polynomial multiply d = a * b */
static void
s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
    mp_digit a_i, a0b0, a1b1, carry = 0;
    while (a_len--) {
        a_i = *a++;
        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
        *d++ = a0b0 ^ carry;
        carry = a1b1;
    }
    *d = carry;
}

/* Compute binary polynomial xor multiply accumulate d ^= a * b */
static void
s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
    mp_digit a_i, a0b0, a1b1, carry = 0;
    while (a_len--) {
        a_i = *a++;
        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
        *d++ ^= a0b0 ^ carry;
        carry = a1b1;
    }
    *d ^= carry;
}

/* Compute binary polynomial xor multiply c = a * b.
 * All parameters may be identical.
 */
mp_err
mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
{
    mp_digit *pb, b_i;
    mp_int tmp;
    mp_size ib, a_used, b_used;
    mp_err res = MP_OKAY;

    MP_DIGITS(&tmp) = 0;

    ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

    if (a == c) {
        MP_CHECKOK(mp_init_copy(&tmp, a));
        if (a == b)
            b = &tmp;
        a = &tmp;
    } else if (b == c) {
        MP_CHECKOK(mp_init_copy(&tmp, b));
        b = &tmp;
    }

    if (MP_USED(a) < MP_USED(b)) {
        const mp_int *xch = b; /* switch a and b if b longer */
        b = a;
        a = xch;
    }

    MP_USED(c) = 1;
    MP_DIGIT(c, 0) = 0;
    MP_CHECKOK(s_mp_pad(c, USED(a) + USED(b)));

    pb = MP_DIGITS(b);
    s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));

    /* Outer loop:  Digits of b */
    a_used = MP_USED(a);
    b_used = MP_USED(b);
    MP_USED(c) = a_used + b_used;
    for (ib = 1; ib < b_used; ib++) {
        b_i = *pb++;

        /* Inner product:  Digits of a */
        if (b_i)
            s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
        else
            MP_DIGIT(c, ib + a_used) = b_i;
    }

    s_mp_clamp(c);

    SIGN(c) = ZPOS;

CLEANUP:
    mp_clear(&tmp);
    return res;
}

/* Compute modular reduction of a and store result in r.
 * r could be a.
 * For modular arithmetic, the irreducible polynomial f(t) is represented
 * as an array of int[], where f(t) is of the form:
 *     f(t) = t^p[0] + t^p[1] + ... + t^p[k]
 * where m = p[0] > p[1] > ... > p[k] = 0.
 */
mp_err
mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
    int j, k;
    int n, dN, d0, d1;
    mp_digit zz, *z, tmp;
    mp_size used;
    mp_err res = MP_OKAY;

    /* The algorithm does the reduction in place in r,
     * if a != r, copy a into r first so reduction can be done in r
     */
    if (a != r) {
        MP_CHECKOK(mp_copy(a, r));
    }
    z = MP_DIGITS(r);

    /* start reduction */
    /*dN = p[0] / MP_DIGIT_BITS; */
    dN = p[0] >> MP_DIGIT_BITS_LOG_2;
    used = MP_USED(r);

    for (j = used - 1; j > dN;) {

        zz = z[j];
        if (zz == 0) {
            j--;
            continue;
        }
        z[j] = 0;

        for (k = 1; p[k] > 0; k++) {
            /* reducing component t^p[k] */
            n = p[0] - p[k];
            /*d0 = n % MP_DIGIT_BITS;   */
            d0 = n & MP_DIGIT_BITS_MASK;
            d1 = MP_DIGIT_BITS - d0;
            /*n /= MP_DIGIT_BITS; */
            n >>= MP_DIGIT_BITS_LOG_2;
            z[j - n] ^= (zz >> d0);
            if (d0)
                z[j - n - 1] ^= (zz << d1);
        }

        /* reducing component t^0 */
        n = dN;
        /*d0 = p[0] % MP_DIGIT_BITS;*/
        d0 = p[0] & MP_DIGIT_BITS_MASK;
        d1 = MP_DIGIT_BITS - d0;
        z[j - n] ^= (zz >> d0);
        if (d0)
            z[j - n - 1] ^= (zz << d1);
    }

    /* final round of reduction */
    while (j == dN) {

        /* d0 = p[0] % MP_DIGIT_BITS; */
        d0 = p[0] & MP_DIGIT_BITS_MASK;
        zz = z[dN] >> d0;
        if (zz == 0)
            break;
        d1 = MP_DIGIT_BITS - d0;

        /* clear up the top d1 bits */
        if (d0) {
            z[dN] = (z[dN] << d1) >> d1;
        } else {
            z[dN] = 0;
        }
        *z ^= zz; /* reduction t^0 component */

        for (k = 1; p[k] > 0; k++) {
            /* reducing component t^p[k]*/
            /* n = p[k] / MP_DIGIT_BITS; */
            n = p[k] >> MP_DIGIT_BITS_LOG_2;
            /* d0 = p[k] % MP_DIGIT_BITS; */
            d0 = p[k] & MP_DIGIT_BITS_MASK;
            d1 = MP_DIGIT_BITS - d0;
            z[n] ^= (zz << d0);
            tmp = zz >> d1;
            if (d0 && tmp)
                z[n + 1] ^= tmp;
        }
    }

    s_mp_clamp(r);
CLEANUP:
    return res;
}

/* Compute the product of two polynomials a and b, reduce modulo p,
 * Store the result in r.  r could be a or b; a could be b.
 */
mp_err
mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
{
    mp_err res;

    if (a == b)
        return mp_bsqrmod(a, p, r);
    if ((res = mp_bmul(a, b, r)) != MP_OKAY)
        return res;
    return mp_bmod(r, p, r);
}

/* Compute binary polynomial squaring c = a*a mod p .
 * Parameter r and a can be identical.
 */

mp_err
mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
    mp_digit *pa, *pr, a_i;
    mp_int tmp;
    mp_size ia, a_used;
    mp_err res;

    ARGCHK(a != NULL && r != NULL, MP_BADARG);
    MP_DIGITS(&tmp) = 0;

    if (a == r) {
        MP_CHECKOK(mp_init_copy(&tmp, a));
        a = &tmp;
    }

    MP_USED(r) = 1;
    MP_DIGIT(r, 0) = 0;
    MP_CHECKOK(s_mp_pad(r, 2 * USED(a)));

    pa = MP_DIGITS(a);
    pr = MP_DIGITS(r);
    a_used = MP_USED(a);
    MP_USED(r) = 2 * a_used;

    for (ia = 0; ia < a_used; ia++) {
        a_i = *pa++;
        *pr++ = gf2m_SQR0(a_i);
        *pr++ = gf2m_SQR1(a_i);
    }

    MP_CHECKOK(mp_bmod(r, p, r));
    s_mp_clamp(r);
    SIGN(r) = ZPOS;

CLEANUP:
    mp_clear(&tmp);
    return res;
}

/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
 * Store the result in r. r could be x or y, and x could equal y.
 * Uses algorithm Modular_Division_GF(2^m) from
 *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
 *     the Great Divide".
 */
int
mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
           const unsigned int p[], mp_int *r)
{
    mp_int aa, bb, uu;
    mp_int *a, *b, *u, *v;
    mp_err res = MP_OKAY;

    MP_DIGITS(&aa) = 0;
    MP_DIGITS(&bb) = 0;
    MP_DIGITS(&uu) = 0;

    MP_CHECKOK(mp_init_copy(&aa, x));
    MP_CHECKOK(mp_init_copy(&uu, y));
    MP_CHECKOK(mp_init_copy(&bb, pp));
    MP_CHECKOK(s_mp_pad(r, USED(pp)));
    MP_USED(r) = 1;
    MP_DIGIT(r, 0) = 0;

    a = &aa;
    b = &bb;
    u = &uu;
    v = r;
    /* reduce x and y mod p */
    MP_CHECKOK(mp_bmod(a, p, a));
    MP_CHECKOK(mp_bmod(u, p, u));

    while (!mp_isodd(a)) {
        s_mp_div2(a);
        if (mp_isodd(u)) {
            MP_CHECKOK(mp_badd(u, pp, u));
        }
        s_mp_div2(u);
    }

    do {
        if (mp_cmp_mag(b, a) > 0) {
            MP_CHECKOK(mp_badd(b, a, b));
            MP_CHECKOK(mp_badd(v, u, v));
            do {
                s_mp_div2(b);
                if (mp_isodd(v)) {
                    MP_CHECKOK(mp_badd(v, pp, v));
                }
                s_mp_div2(v);
            } while (!mp_isodd(b));
        } else if ((MP_DIGIT(a, 0) == 1) && (MP_USED(a) == 1))
            break;
        else {
            MP_CHECKOK(mp_badd(a, b, a));
            MP_CHECKOK(mp_badd(u, v, u));
            do {
                s_mp_div2(a);
                if (mp_isodd(u)) {
                    MP_CHECKOK(mp_badd(u, pp, u));
                }
                s_mp_div2(u);
            } while (!mp_isodd(a));
        }
    } while (1);

    MP_CHECKOK(mp_copy(u, r));

CLEANUP:
    mp_clear(&aa);
    mp_clear(&bb);
    mp_clear(&uu);
    return res;
}

/* Convert the bit-string representation of a polynomial a into an array
 * of integers corresponding to the bits with non-zero coefficient.
 * Up to max elements of the array will be filled.  Return value is total
 * number of coefficients that would be extracted if array was large enough.
 */
int
mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
{
    int i, j, k;
    mp_digit top_bit, mask;

    top_bit = 1;
    top_bit <<= MP_DIGIT_BIT - 1;

    for (k = 0; k < max; k++)
        p[k] = 0;
    k = 0;

    for (i = MP_USED(a) - 1; i >= 0; i--) {
        mask = top_bit;
        for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
            if (MP_DIGITS(a)[i] & mask) {
                if (k < max)
                    p[k] = MP_DIGIT_BIT * i + j;
                k++;
            }
            mask >>= 1;
        }
    }

    return k;
}

/* Convert the coefficient array representation of a polynomial to a
 * bit-string.  The array must be terminated by 0.
 */
mp_err
mp_barr2poly(const unsigned int p[], mp_int *a)
{

    mp_err res = MP_OKAY;
    int i;

    mp_zero(a);
    for (i = 0; p[i] > 0; i++) {
        MP_CHECKOK(mpl_set_bit(a, p[i], 1));
    }
    MP_CHECKOK(mpl_set_bit(a, 0, 1));

CLEANUP:
    return res;
}