Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) 2011 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Restructured in 2009 by: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// dump_symbols.cc: implement google_breakpad::WriteSymbolFile:
// Find all the debugging info in a file and dump it as a Breakpad symbol file.
#include "common/linux/dump_symbols.h"
#include <assert.h>
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <link.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <iostream>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "common/arm_ex_reader.h"
#include "common/dwarf/bytereader-inl.h"
#include "common/dwarf/dwarf2diehandler.h"
#include "common/dwarf_cfi_to_module.h"
#include "common/dwarf_cu_to_module.h"
#include "common/dwarf_line_to_module.h"
#include "common/dwarf_range_list_handler.h"
#include "common/linux/crc32.h"
#include "common/linux/eintr_wrapper.h"
#include "common/linux/elfutils.h"
#include "common/linux/elfutils-inl.h"
#include "common/linux/elf_symbols_to_module.h"
#include "common/linux/file_id.h"
#include "common/memory_allocator.h"
#include "common/module.h"
#include "common/path_helper.h"
#include "common/scoped_ptr.h"
#ifndef NO_STABS_SUPPORT
#include "common/stabs_reader.h"
#include "common/stabs_to_module.h"
#endif
#include "common/using_std_string.h"
#ifndef SHT_ARM_EXIDX
// bionic and older glibc don't define this
# define SHT_ARM_EXIDX (SHT_LOPROC + 1)
#endif
// This namespace contains helper functions.
namespace {
using google_breakpad::DumpOptions;
using google_breakpad::DwarfCFIToModule;
using google_breakpad::DwarfCUToModule;
using google_breakpad::DwarfLineToModule;
using google_breakpad::DwarfRangeListHandler;
using google_breakpad::ElfClass;
using google_breakpad::ElfClass32;
using google_breakpad::ElfClass64;
using google_breakpad::FileID;
using google_breakpad::FindElfSectionByName;
using google_breakpad::GetOffset;
using google_breakpad::IsValidElf;
using google_breakpad::kDefaultBuildIdSize;
using google_breakpad::Module;
using google_breakpad::PageAllocator;
#ifndef NO_STABS_SUPPORT
using google_breakpad::StabsToModule;
#endif
using google_breakpad::scoped_ptr;
using google_breakpad::wasteful_vector;
// Define AARCH64 ELF architecture if host machine does not include this define.
#ifndef EM_AARCH64
#define EM_AARCH64 183
#endif
//
// FDWrapper
//
// Wrapper class to make sure opened file is closed.
//
class FDWrapper {
public:
explicit FDWrapper(int fd) :
fd_(fd) {}
~FDWrapper() {
if (fd_ != -1)
close(fd_);
}
int get() {
return fd_;
}
int release() {
int fd = fd_;
fd_ = -1;
return fd;
}
private:
int fd_;
};
//
// MmapWrapper
//
// Wrapper class to make sure mapped regions are unmapped.
//
class MmapWrapper {
public:
MmapWrapper() : is_set_(false) {}
~MmapWrapper() {
if (is_set_ && base_ != NULL) {
assert(size_ > 0);
munmap(base_, size_);
}
}
void set(void *mapped_address, size_t mapped_size) {
is_set_ = true;
base_ = mapped_address;
size_ = mapped_size;
}
void release() {
assert(is_set_);
is_set_ = false;
base_ = NULL;
size_ = 0;
}
private:
bool is_set_;
void* base_;
size_t size_;
};
// Find the preferred loading address of the binary.
template<typename ElfClass>
typename ElfClass::Addr GetLoadingAddress(
const typename ElfClass::Phdr* program_headers,
int nheader) {
typedef typename ElfClass::Phdr Phdr;
// For non-PIC executables (e_type == ET_EXEC), the load address is
// the start address of the first PT_LOAD segment. (ELF requires
// the segments to be sorted by load address.) For PIC executables
// and dynamic libraries (e_type == ET_DYN), this address will
// normally be zero.
for (int i = 0; i < nheader; ++i) {
const Phdr& header = program_headers[i];
if (header.p_type == PT_LOAD)
return header.p_vaddr;
}
return 0;
}
// Find the set of address ranges for all PT_LOAD segments.
template <typename ElfClass>
vector<Module::Range> GetPtLoadSegmentRanges(
const typename ElfClass::Phdr* program_headers,
int nheader) {
typedef typename ElfClass::Phdr Phdr;
vector<Module::Range> ranges;
for (int i = 0; i < nheader; ++i) {
const Phdr& header = program_headers[i];
if (header.p_type == PT_LOAD) {
ranges.push_back(Module::Range(header.p_vaddr, header.p_memsz));
}
}
return ranges;
}
#ifndef NO_STABS_SUPPORT
template<typename ElfClass>
bool LoadStabs(const typename ElfClass::Ehdr* elf_header,
const typename ElfClass::Shdr* stab_section,
const typename ElfClass::Shdr* stabstr_section,
const bool big_endian,
Module* module) {
// A callback object to handle data from the STABS reader.
StabsToModule handler(module);
// Find the addresses of the STABS data, and create a STABS reader object.
// On Linux, STABS entries always have 32-bit values, regardless of the
// address size of the architecture whose code they're describing, and
// the strings are always "unitized".
const uint8_t* stabs =
GetOffset<ElfClass, uint8_t>(elf_header, stab_section->sh_offset);
const uint8_t* stabstr =
GetOffset<ElfClass, uint8_t>(elf_header, stabstr_section->sh_offset);
google_breakpad::StabsReader reader(stabs, stab_section->sh_size,
stabstr, stabstr_section->sh_size,
big_endian, 4, true, &handler);
// Read the STABS data, and do post-processing.
if (!reader.Process())
return false;
handler.Finalize();
return true;
}
#endif // NO_STABS_SUPPORT
// A range handler that accepts rangelist data parsed by
// dwarf2reader::RangeListReader and populates a range vector (typically
// owned by a function) with the results.
class DumperRangesHandler : public DwarfCUToModule::RangesHandler {
public:
DumperRangesHandler(const uint8_t *buffer, uint64 size,
dwarf2reader::ByteReader* reader)
: buffer_(buffer), size_(size), reader_(reader) { }
bool ReadRanges(uint64 offset, Module::Address base_address,
vector<Module::Range>* ranges) {
DwarfRangeListHandler handler(base_address, ranges);
dwarf2reader::RangeListReader rangelist_reader(buffer_, size_, reader_,
&handler);
return rangelist_reader.ReadRangeList(offset);
}
private:
const uint8_t *buffer_;
uint64 size_;
dwarf2reader::ByteReader* reader_;
};
// A line-to-module loader that accepts line number info parsed by
// dwarf2reader::LineInfo and populates a Module and a line vector
// with the results.
class DumperLineToModule: public DwarfCUToModule::LineToModuleHandler {
public:
// Create a line-to-module converter using BYTE_READER.
explicit DumperLineToModule(dwarf2reader::ByteReader *byte_reader)
: byte_reader_(byte_reader) { }
void StartCompilationUnit(const string& compilation_dir) {
compilation_dir_ = compilation_dir;
}
void ReadProgram(const uint8_t *program, uint64 length,
Module* module, std::vector<Module::Line>* lines) {
DwarfLineToModule handler(module, compilation_dir_, lines);
dwarf2reader::LineInfo parser(program, length, byte_reader_, &handler);
parser.Start();
}
private:
string compilation_dir_;
dwarf2reader::ByteReader *byte_reader_;
};
template<typename ElfClass>
bool LoadDwarf(const string& dwarf_filename,
const typename ElfClass::Ehdr* elf_header,
const bool big_endian,
bool handle_inter_cu_refs,
Module* module) {
typedef typename ElfClass::Shdr Shdr;
const dwarf2reader::Endianness endianness = big_endian ?
dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE;
dwarf2reader::ByteReader byte_reader(endianness);
// Construct a context for this file.
DwarfCUToModule::FileContext file_context(dwarf_filename,
module,
handle_inter_cu_refs);
// Build a map of the ELF file's sections.
const Shdr* sections =
GetOffset<ElfClass, Shdr>(elf_header, elf_header->e_shoff);
int num_sections = elf_header->e_shnum;
const Shdr* section_names = sections + elf_header->e_shstrndx;
for (int i = 0; i < num_sections; i++) {
const Shdr* section = &sections[i];
string name = GetOffset<ElfClass, char>(elf_header,
section_names->sh_offset) +
section->sh_name;
const uint8_t *contents = GetOffset<ElfClass, uint8_t>(elf_header,
section->sh_offset);
file_context.AddSectionToSectionMap(name, contents, section->sh_size);
}
// Optional .debug_ranges reader
scoped_ptr<DumperRangesHandler> ranges_handler;
dwarf2reader::SectionMap::const_iterator ranges_entry =
file_context.section_map().find(".debug_ranges");
if (ranges_entry != file_context.section_map().end()) {
const std::pair<const uint8_t *, uint64>& ranges_section =
ranges_entry->second;
ranges_handler.reset(
new DumperRangesHandler(ranges_section.first, ranges_section.second,
&byte_reader));
}
// Parse all the compilation units in the .debug_info section.
DumperLineToModule line_to_module(&byte_reader);
dwarf2reader::SectionMap::const_iterator debug_info_entry =
file_context.section_map().find(".debug_info");
assert(debug_info_entry != file_context.section_map().end());
const std::pair<const uint8_t *, uint64>& debug_info_section =
debug_info_entry->second;
// This should never have been called if the file doesn't have a
// .debug_info section.
assert(debug_info_section.first);
uint64 debug_info_length = debug_info_section.second;
for (uint64 offset = 0; offset < debug_info_length;) {
// Make a handler for the root DIE that populates MODULE with the
// data that was found.
DwarfCUToModule::WarningReporter reporter(dwarf_filename, offset);
DwarfCUToModule root_handler(&file_context, &line_to_module,
ranges_handler.get(), &reporter);
// Make a Dwarf2Handler that drives the DIEHandler.
dwarf2reader::DIEDispatcher die_dispatcher(&root_handler);
// Make a DWARF parser for the compilation unit at OFFSET.
dwarf2reader::CompilationUnit reader(dwarf_filename,
file_context.section_map(),
offset,
&byte_reader,
&die_dispatcher);
// Process the entire compilation unit; get the offset of the next.
offset += reader.Start();
}
return true;
}
// Fill REGISTER_NAMES with the register names appropriate to the
// machine architecture given in HEADER, indexed by the register
// numbers used in DWARF call frame information. Return true on
// success, or false if HEADER's machine architecture is not
// supported.
template<typename ElfClass>
bool DwarfCFIRegisterNames(const typename ElfClass::Ehdr* elf_header,
std::vector<string>* register_names) {
switch (elf_header->e_machine) {
case EM_386:
*register_names = DwarfCFIToModule::RegisterNames::I386();
return true;
case EM_ARM:
*register_names = DwarfCFIToModule::RegisterNames::ARM();
return true;
case EM_AARCH64:
*register_names = DwarfCFIToModule::RegisterNames::ARM64();
return true;
case EM_MIPS:
*register_names = DwarfCFIToModule::RegisterNames::MIPS();
return true;
case EM_X86_64:
*register_names = DwarfCFIToModule::RegisterNames::X86_64();
return true;
default:
return false;
}
}
template<typename ElfClass>
bool LoadDwarfCFI(const string& dwarf_filename,
const typename ElfClass::Ehdr* elf_header,
const char* section_name,
const typename ElfClass::Shdr* section,
const bool eh_frame,
const typename ElfClass::Shdr* got_section,
const typename ElfClass::Shdr* text_section,
const bool big_endian,
Module* module) {
// Find the appropriate set of register names for this file's
// architecture.
std::vector<string> register_names;
if (!DwarfCFIRegisterNames<ElfClass>(elf_header, &register_names)) {
fprintf(stderr, "%s: unrecognized ELF machine architecture '%d';"
" cannot convert DWARF call frame information\n",
dwarf_filename.c_str(), elf_header->e_machine);
return false;
}
const dwarf2reader::Endianness endianness = big_endian ?
dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE;
// Find the call frame information and its size.
const uint8_t *cfi =
GetOffset<ElfClass, uint8_t>(elf_header, section->sh_offset);
size_t cfi_size = section->sh_size;
// Plug together the parser, handler, and their entourages.
DwarfCFIToModule::Reporter module_reporter(dwarf_filename, section_name);
DwarfCFIToModule handler(module, register_names, &module_reporter);
dwarf2reader::ByteReader byte_reader(endianness);
byte_reader.SetAddressSize(ElfClass::kAddrSize);
// Provide the base addresses for .eh_frame encoded pointers, if
// possible.
byte_reader.SetCFIDataBase(section->sh_addr, cfi);
if (got_section)
byte_reader.SetDataBase(got_section->sh_addr);
if (text_section)
byte_reader.SetTextBase(text_section->sh_addr);
dwarf2reader::CallFrameInfo::Reporter dwarf_reporter(dwarf_filename,
section_name);
dwarf2reader::CallFrameInfo parser(cfi, cfi_size,
&byte_reader, &handler, &dwarf_reporter,
eh_frame);
parser.Start();
return true;
}
template<typename ElfClass>
bool LoadARMexidx(const typename ElfClass::Ehdr* elf_header,
const typename ElfClass::Shdr* exidx_section,
const typename ElfClass::Shdr* extab_section,
uint32_t loading_addr,
Module* module) {
// To do this properly we need to know:
// * the bounds of the .ARM.exidx section in the mapped image
// * the bounds of the .ARM.extab section in the mapped image
// * the vma of the last byte in the text section associated with the .exidx
// The first two are easy. The third is a bit tricky. If we can't
// figure out what it is, just pass in zero.
const char *exidx_img
= GetOffset<ElfClass, char>(elf_header, exidx_section->sh_offset);
size_t exidx_size = exidx_section->sh_size;
const char *extab_img
= GetOffset<ElfClass, char>(elf_header, extab_section->sh_offset);
size_t extab_size = extab_section->sh_size;
// The sh_link field of the exidx section gives the section number
// for the associated text section.
uint32_t exidx_text_last_svma = 0;
int exidx_text_sno = exidx_section->sh_link;
typedef typename ElfClass::Shdr Shdr;
// |sections| points to the section header table
const Shdr* sections
= GetOffset<ElfClass, Shdr>(elf_header, elf_header->e_shoff);
const int num_sections = elf_header->e_shnum;
if (exidx_text_sno >= 0 && exidx_text_sno < num_sections) {
const Shdr* exidx_text_shdr = &sections[exidx_text_sno];
if (exidx_text_shdr->sh_size > 0) {
exidx_text_last_svma
= exidx_text_shdr->sh_addr + exidx_text_shdr->sh_size - 1;
}
}
arm_ex_to_module::ARMExToModule handler(module);
arm_ex_reader::ExceptionTableInfo
parser(exidx_img, exidx_size, extab_img, extab_size, exidx_text_last_svma,
&handler,
reinterpret_cast<const char*>(elf_header),
loading_addr);
parser.Start();
return true;
}
bool LoadELF(const string& obj_file, MmapWrapper* map_wrapper,
void** elf_header) {
int obj_fd = open(obj_file.c_str(), O_RDONLY);
if (obj_fd < 0) {
fprintf(stderr, "Failed to open ELF file '%s': %s\n",
obj_file.c_str(), strerror(errno));
return false;
}
FDWrapper obj_fd_wrapper(obj_fd);
struct stat st;
if (fstat(obj_fd, &st) != 0 && st.st_size <= 0) {
fprintf(stderr, "Unable to fstat ELF file '%s': %s\n",
obj_file.c_str(), strerror(errno));
return false;
}
void* obj_base = mmap(NULL, st.st_size,
PROT_READ | PROT_WRITE, MAP_PRIVATE, obj_fd, 0);
if (obj_base == MAP_FAILED) {
fprintf(stderr, "Failed to mmap ELF file '%s': %s\n",
obj_file.c_str(), strerror(errno));
return false;
}
map_wrapper->set(obj_base, st.st_size);
*elf_header = obj_base;
if (!IsValidElf(*elf_header)) {
fprintf(stderr, "Not a valid ELF file: %s\n", obj_file.c_str());
return false;
}
return true;
}
// Get the endianness of ELF_HEADER. If it's invalid, return false.
template<typename ElfClass>
bool ElfEndianness(const typename ElfClass::Ehdr* elf_header,
bool* big_endian) {
if (elf_header->e_ident[EI_DATA] == ELFDATA2LSB) {
*big_endian = false;
return true;
}
if (elf_header->e_ident[EI_DATA] == ELFDATA2MSB) {
*big_endian = true;
return true;
}
fprintf(stderr, "bad data encoding in ELF header: %d\n",
elf_header->e_ident[EI_DATA]);
return false;
}
// Given |left_abspath|, find the absolute path for |right_path| and see if the
// two absolute paths are the same.
bool IsSameFile(const char* left_abspath, const string& right_path) {
char right_abspath[PATH_MAX];
if (!realpath(right_path.c_str(), right_abspath))
return false;
return strcmp(left_abspath, right_abspath) == 0;
}
// Read the .gnu_debuglink and get the debug file name. If anything goes
// wrong, return an empty string.
string ReadDebugLink(const uint8_t *debuglink,
const size_t debuglink_size,
const bool big_endian,
const string& obj_file,
const std::vector<string>& debug_dirs) {
// Include '\0' + CRC32 (4 bytes).
size_t debuglink_len = strlen(reinterpret_cast<const char *>(debuglink)) + 5;
debuglink_len = 4 * ((debuglink_len + 3) / 4); // Round up to 4 bytes.
// Sanity check.
if (debuglink_len != debuglink_size) {
fprintf(stderr, "Mismatched .gnu_debuglink string / section size: "
"%zx %zx\n", debuglink_len, debuglink_size);
return string();
}
char obj_file_abspath[PATH_MAX];
if (!realpath(obj_file.c_str(), obj_file_abspath)) {
fprintf(stderr, "Cannot resolve absolute path for %s\n", obj_file.c_str());
return string();
}
std::vector<string> searched_paths;
string debuglink_path;
std::vector<string>::const_iterator it;
for (it = debug_dirs.begin(); it < debug_dirs.end(); ++it) {
const string& debug_dir = *it;
debuglink_path = debug_dir + "/" +
reinterpret_cast<const char *>(debuglink);
// There is the annoying case of /path/to/foo.so having foo.so as the
// debug link file name. Thus this may end up opening /path/to/foo.so again,
// and there is a small chance of the two files having the same CRC.
if (IsSameFile(obj_file_abspath, debuglink_path))
continue;
searched_paths.push_back(debug_dir);
int debuglink_fd = open(debuglink_path.c_str(), O_RDONLY);
if (debuglink_fd < 0)
continue;
FDWrapper debuglink_fd_wrapper(debuglink_fd);
// The CRC is the last 4 bytes in |debuglink|.
const dwarf2reader::Endianness endianness = big_endian ?
dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE;
dwarf2reader::ByteReader byte_reader(endianness);
uint32_t expected_crc =
byte_reader.ReadFourBytes(&debuglink[debuglink_size - 4]);
uint32_t actual_crc = 0;
while (true) {
const size_t kReadSize = 4096;
char buf[kReadSize];
ssize_t bytes_read = HANDLE_EINTR(read(debuglink_fd, &buf, kReadSize));
if (bytes_read < 0) {
fprintf(stderr, "Error reading debug ELF file %s.\n",
debuglink_path.c_str());
return string();
}
if (bytes_read == 0)
break;
actual_crc = google_breakpad::UpdateCrc32(actual_crc, buf, bytes_read);
}
if (actual_crc != expected_crc) {
fprintf(stderr, "Error reading debug ELF file - CRC32 mismatch: %s\n",
debuglink_path.c_str());
continue;
}
// Found debug file.
return debuglink_path;
}
// Not found case.
fprintf(stderr, "Failed to find debug ELF file for '%s' after trying:\n",
obj_file.c_str());
for (it = searched_paths.begin(); it < searched_paths.end(); ++it) {
const string& debug_dir = *it;
fprintf(stderr, " %s/%s\n", debug_dir.c_str(), debuglink);
}
return string();
}
//
// LoadSymbolsInfo
//
// Holds the state between the two calls to LoadSymbols() in case it's necessary
// to follow the .gnu_debuglink section and load debug information from a
// different file.
//
template<typename ElfClass>
class LoadSymbolsInfo {
public:
typedef typename ElfClass::Addr Addr;
explicit LoadSymbolsInfo(const std::vector<string>& dbg_dirs) :
debug_dirs_(dbg_dirs),
has_loading_addr_(false) {}
// Keeps track of which sections have been loaded so sections don't
// accidentally get loaded twice from two different files.
void LoadedSection(const string &section) {
if (loaded_sections_.count(section) == 0) {
loaded_sections_.insert(section);
} else {
fprintf(stderr, "Section %s has already been loaded.\n",
section.c_str());
}
}
// The ELF file and linked debug file are expected to have the same preferred
// loading address.
void set_loading_addr(Addr addr, const string &filename) {
if (!has_loading_addr_) {
loading_addr_ = addr;
loaded_file_ = filename;
return;
}
if (addr != loading_addr_) {
fprintf(stderr,
"ELF file '%s' and debug ELF file '%s' "
"have different load addresses.\n",
loaded_file_.c_str(), filename.c_str());
assert(false);
}
}
// Setters and getters
const std::vector<string>& debug_dirs() const {
return debug_dirs_;
}
string debuglink_file() const {
return debuglink_file_;
}
void set_debuglink_file(string file) {
debuglink_file_ = file;
}
private:
const std::vector<string>& debug_dirs_; // Directories in which to
// search for the debug ELF file.
string debuglink_file_; // Full path to the debug ELF file.
bool has_loading_addr_; // Indicate if LOADING_ADDR_ is valid.
Addr loading_addr_; // Saves the preferred loading address from the
// first call to LoadSymbols().
string loaded_file_; // Name of the file loaded from the first call to
// LoadSymbols().
std::set<string> loaded_sections_; // Tracks the Loaded ELF sections
// between calls to LoadSymbols().
};
template<typename ElfClass>
bool LoadSymbols(const string& obj_file,
const bool big_endian,
const typename ElfClass::Ehdr* elf_header,
const bool read_gnu_debug_link,
LoadSymbolsInfo<ElfClass>* info,
const DumpOptions& options,
Module* module) {
typedef typename ElfClass::Addr Addr;
typedef typename ElfClass::Phdr Phdr;
typedef typename ElfClass::Shdr Shdr;
Addr loading_addr = GetLoadingAddress<ElfClass>(
GetOffset<ElfClass, Phdr>(elf_header, elf_header->e_phoff),
elf_header->e_phnum);
module->SetLoadAddress(loading_addr);
info->set_loading_addr(loading_addr, obj_file);
// Allow filtering of extraneous debug information in partitioned libraries.
// Such libraries contain debug information for all libraries extracted from
// the same combined library, implying extensive duplication.
vector<Module::Range> address_ranges = GetPtLoadSegmentRanges<ElfClass>(
GetOffset<ElfClass, Phdr>(elf_header, elf_header->e_phoff),
elf_header->e_phnum);
module->SetAddressRanges(address_ranges);
const Shdr* sections =
GetOffset<ElfClass, Shdr>(elf_header, elf_header->e_shoff);
const Shdr* section_names = sections + elf_header->e_shstrndx;
const char* names =
GetOffset<ElfClass, char>(elf_header, section_names->sh_offset);
const char *names_end = names + section_names->sh_size;
bool found_debug_info_section = false;
bool found_usable_info = false;
if (options.symbol_data != ONLY_CFI) {
#ifndef NO_STABS_SUPPORT
// Look for STABS debugging information, and load it if present.
const Shdr* stab_section =
FindElfSectionByName<ElfClass>(".stab", SHT_PROGBITS,
sections, names, names_end,
elf_header->e_shnum);
if (stab_section) {
const Shdr* stabstr_section = stab_section->sh_link + sections;
if (stabstr_section) {
found_debug_info_section = true;
found_usable_info = true;
info->LoadedSection(".stab");
if (!LoadStabs<ElfClass>(elf_header, stab_section, stabstr_section,
big_endian, module)) {
fprintf(stderr, "%s: \".stab\" section found, but failed to load"
" STABS debugging information\n", obj_file.c_str());
}
}
}
#endif // NO_STABS_SUPPORT
// Look for DWARF debugging information, and load it if present.
const Shdr* dwarf_section =
FindElfSectionByName<ElfClass>(".debug_info", SHT_PROGBITS,
sections, names, names_end,
elf_header->e_shnum);
// .debug_info section type is SHT_PROGBITS for mips on pnacl toolchains,
// but MIPS_DWARF for regular gnu toolchains, so both need to be checked
if (elf_header->e_machine == EM_MIPS && !dwarf_section) {
dwarf_section =
FindElfSectionByName<ElfClass>(".debug_info", SHT_MIPS_DWARF,
sections, names, names_end,
elf_header->e_shnum);
}
if (dwarf_section) {
found_debug_info_section = true;
found_usable_info = true;
info->LoadedSection(".debug_info");
if (!LoadDwarf<ElfClass>(obj_file, elf_header, big_endian,
options.handle_inter_cu_refs, module)) {
fprintf(stderr, "%s: \".debug_info\" section found, but failed to load "
"DWARF debugging information\n", obj_file.c_str());
}
}
// See if there are export symbols available.
const Shdr* symtab_section =
FindElfSectionByName<ElfClass>(".symtab", SHT_SYMTAB,
sections, names, names_end,
elf_header->e_shnum);
const Shdr* strtab_section =
FindElfSectionByName<ElfClass>(".strtab", SHT_STRTAB,
sections, names, names_end,
elf_header->e_shnum);
if (symtab_section && strtab_section) {
info->LoadedSection(".symtab");
const uint8_t* symtab =
GetOffset<ElfClass, uint8_t>(elf_header,
symtab_section->sh_offset);
const uint8_t* strtab =
GetOffset<ElfClass, uint8_t>(elf_header,
strtab_section->sh_offset);
bool result =
ELFSymbolsToModule(symtab,
symtab_section->sh_size,
strtab,
strtab_section->sh_size,
big_endian,
ElfClass::kAddrSize,
module);
found_usable_info = found_usable_info || result;
} else {
// Look in dynsym only if full symbol table was not available.
const Shdr* dynsym_section =
FindElfSectionByName<ElfClass>(".dynsym", SHT_DYNSYM,
sections, names, names_end,
elf_header->e_shnum);
const Shdr* dynstr_section =
FindElfSectionByName<ElfClass>(".dynstr", SHT_STRTAB,
sections, names, names_end,
elf_header->e_shnum);
if (dynsym_section && dynstr_section) {
info->LoadedSection(".dynsym");
const uint8_t* dynsyms =
GetOffset<ElfClass, uint8_t>(elf_header,
dynsym_section->sh_offset);
const uint8_t* dynstrs =
GetOffset<ElfClass, uint8_t>(elf_header,
dynstr_section->sh_offset);
bool result =
ELFSymbolsToModule(dynsyms,
dynsym_section->sh_size,
dynstrs,
dynstr_section->sh_size,
big_endian,
ElfClass::kAddrSize,
module);
found_usable_info = found_usable_info || result;
}
}
}
if (options.symbol_data != NO_CFI) {
// Dwarf Call Frame Information (CFI) is actually independent from
// the other DWARF debugging information, and can be used alone.
const Shdr* dwarf_cfi_section =
FindElfSectionByName<ElfClass>(".debug_frame", SHT_PROGBITS,
sections, names, names_end,
elf_header->e_shnum);
// .debug_frame section type is SHT_PROGBITS for mips on pnacl toolchains,
// but MIPS_DWARF for regular gnu toolchains, so both need to be checked
if (elf_header->e_machine == EM_MIPS && !dwarf_cfi_section) {
dwarf_cfi_section =
FindElfSectionByName<ElfClass>(".debug_frame", SHT_MIPS_DWARF,
sections, names, names_end,
elf_header->e_shnum);
}
if (dwarf_cfi_section) {
// Ignore the return value of this function; even without call frame
// information, the other debugging information could be perfectly
// useful.
info->LoadedSection(".debug_frame");
bool result =
LoadDwarfCFI<ElfClass>(obj_file, elf_header, ".debug_frame",
dwarf_cfi_section, false, 0, 0, big_endian,
module);
found_usable_info = found_usable_info || result;
}
// Linux C++ exception handling information can also provide
// unwinding data.
const Shdr* eh_frame_section =
FindElfSectionByName<ElfClass>(".eh_frame", SHT_PROGBITS,
sections, names, names_end,
elf_header->e_shnum);
if (eh_frame_section) {
// Pointers in .eh_frame data may be relative to the base addresses of
// certain sections. Provide those sections if present.
const Shdr* got_section =
FindElfSectionByName<ElfClass>(".got", SHT_PROGBITS,
sections, names, names_end,
elf_header->e_shnum);
const Shdr* text_section =
FindElfSectionByName<ElfClass>(".text", SHT_PROGBITS,
sections, names, names_end,
elf_header->e_shnum);
info->LoadedSection(".eh_frame");
// As above, ignore the return value of this function.
bool result =
LoadDwarfCFI<ElfClass>(obj_file, elf_header, ".eh_frame",
eh_frame_section, true,
got_section, text_section, big_endian, module);
found_usable_info = found_usable_info || result;
}
}
// ARM has special unwind tables that can be used.
const Shdr* arm_exidx_section =
FindElfSectionByName<ElfClass>(".ARM.exidx", SHT_ARM_EXIDX,
sections, names, names_end,
elf_header->e_shnum);
const Shdr* arm_extab_section =
FindElfSectionByName<ElfClass>(".ARM.extab", SHT_PROGBITS,
sections, names, names_end,
elf_header->e_shnum);
// Load information from these sections even if there is
// .debug_info, because some functions (e.g., hand-written or
// script-generated assembly) could have exidx entries but no DWARF.
// (For functions with both, the DWARF info that has already been
// parsed will take precedence.)
if (arm_exidx_section && arm_extab_section && options.symbol_data != NO_CFI) {
info->LoadedSection(".ARM.exidx");
info->LoadedSection(".ARM.extab");
bool result = LoadARMexidx<ElfClass>(elf_header,
arm_exidx_section, arm_extab_section,
loading_addr, module);
found_usable_info = found_usable_info || result;
}
if (!found_debug_info_section) {
fprintf(stderr, "%s: file contains no debugging information"
" (no \".stab\" or \".debug_info\" sections)\n",
obj_file.c_str());
// Failed, but maybe there's a .gnu_debuglink section?
if (read_gnu_debug_link) {
const Shdr* gnu_debuglink_section
= FindElfSectionByName<ElfClass>(".gnu_debuglink", SHT_PROGBITS,
sections, names,
names_end, elf_header->e_shnum);
if (gnu_debuglink_section) {
if (!info->debug_dirs().empty()) {
const uint8_t *debuglink_contents =
GetOffset<ElfClass, uint8_t>(elf_header,
gnu_debuglink_section->sh_offset);
string debuglink_file =
ReadDebugLink(debuglink_contents,
gnu_debuglink_section->sh_size,
big_endian,
obj_file,
info->debug_dirs());
info->set_debuglink_file(debuglink_file);
} else {
fprintf(stderr, ".gnu_debuglink section found in '%s', "
"but no debug path specified.\n", obj_file.c_str());
}
} else {
fprintf(stderr, "%s does not contain a .gnu_debuglink section.\n",
obj_file.c_str());
}
} else {
// Return true if some usable information was found, since the caller
// doesn't want to use .gnu_debuglink.
return found_usable_info;
}
// No debug info was found, let the user try again with .gnu_debuglink
// if present.
return false;
}
return true;
}
// Return the breakpad symbol file identifier for the architecture of
// ELF_HEADER.
template<typename ElfClass>
const char* ElfArchitecture(const typename ElfClass::Ehdr* elf_header) {
typedef typename ElfClass::Half Half;
Half arch = elf_header->e_machine;
switch (arch) {
case EM_386: return "x86";
case EM_ARM: return "arm";
case EM_AARCH64: return "arm64";
case EM_MIPS: return "mips";
case EM_PPC64: return "ppc64";
case EM_PPC: return "ppc";
case EM_S390: return "s390";
case EM_SPARC: return "sparc";
case EM_SPARCV9: return "sparcv9";
case EM_X86_64: return "x86_64";
default: return NULL;
}
}
template<typename ElfClass>
bool SanitizeDebugFile(const typename ElfClass::Ehdr* debug_elf_header,
const string& debuglink_file,
const string& obj_filename,
const char* obj_file_architecture,
const bool obj_file_is_big_endian) {
const char* debug_architecture =
ElfArchitecture<ElfClass>(debug_elf_header);
if (!debug_architecture) {
fprintf(stderr, "%s: unrecognized ELF machine architecture: %d\n",
debuglink_file.c_str(), debug_elf_header->e_machine);
return false;
}
if (strcmp(obj_file_architecture, debug_architecture)) {
fprintf(stderr, "%s with ELF machine architecture %s does not match "
"%s with ELF architecture %s\n",
debuglink_file.c_str(), debug_architecture,
obj_filename.c_str(), obj_file_architecture);
return false;
}
bool debug_big_endian;
if (!ElfEndianness<ElfClass>(debug_elf_header, &debug_big_endian))
return false;
if (debug_big_endian != obj_file_is_big_endian) {
fprintf(stderr, "%s and %s does not match in endianness\n",
obj_filename.c_str(), debuglink_file.c_str());
return false;
}
return true;
}
template<typename ElfClass>
bool InitModuleForElfClass(const typename ElfClass::Ehdr* elf_header,
const string& obj_filename,
const string& obj_os,
scoped_ptr<Module>& module) {
PageAllocator allocator;
wasteful_vector<uint8_t> identifier(&allocator, kDefaultBuildIdSize);
if (!FileID::ElfFileIdentifierFromMappedFile(elf_header, identifier)) {
fprintf(stderr, "%s: unable to generate file identifier\n",
obj_filename.c_str());
return false;
}
const char *architecture = ElfArchitecture<ElfClass>(elf_header);
if (!architecture) {
fprintf(stderr, "%s: unrecognized ELF machine architecture: %d\n",
obj_filename.c_str(), elf_header->e_machine);
return false;
}
char name_buf[NAME_MAX] = {};
std::string name = google_breakpad::ElfFileSoNameFromMappedFile(
elf_header, name_buf, sizeof(name_buf))
? name_buf
: google_breakpad::BaseName(obj_filename);
// Add an extra "0" at the end. PDB files on Windows have an 'age'
// number appended to the end of the file identifier; this isn't
// really used or necessary on other platforms, but be consistent.
string id = FileID::ConvertIdentifierToUUIDString(identifier) + "0";
// This is just the raw Build ID in hex.
string code_id = FileID::ConvertIdentifierToString(identifier);
module.reset(new Module(name, obj_os, architecture, id, code_id));
return true;
}
template<typename ElfClass>
bool ReadSymbolDataElfClass(const typename ElfClass::Ehdr* elf_header,
const string& obj_filename,
const string& obj_os,
const std::vector<string>& debug_dirs,
const DumpOptions& options,
Module** out_module) {
typedef typename ElfClass::Ehdr Ehdr;
*out_module = NULL;
scoped_ptr<Module> module;
if (!InitModuleForElfClass<ElfClass>(elf_header, obj_filename, obj_os,
module)) {
return false;
}
// Figure out what endianness this file is.
bool big_endian;
if (!ElfEndianness<ElfClass>(elf_header, &big_endian))
return false;
LoadSymbolsInfo<ElfClass> info(debug_dirs);
if (!LoadSymbols<ElfClass>(obj_filename, big_endian, elf_header,
!debug_dirs.empty(), &info,
options, module.get())) {
const string debuglink_file = info.debuglink_file();
if (debuglink_file.empty())
return false;
// Load debuglink ELF file.
fprintf(stderr, "Found debugging info in %s\n", debuglink_file.c_str());
MmapWrapper debug_map_wrapper;
Ehdr* debug_elf_header = NULL;
if (!LoadELF(debuglink_file, &debug_map_wrapper,
reinterpret_cast<void**>(&debug_elf_header)) ||
!SanitizeDebugFile<ElfClass>(debug_elf_header, debuglink_file,
obj_filename,
module->architecture().c_str(),
big_endian)) {
return false;
}
if (!LoadSymbols<ElfClass>(debuglink_file, big_endian,
debug_elf_header, false, &info,
options, module.get())) {
return false;
}
}
*out_module = module.release();
return true;
}
} // namespace
namespace google_breakpad {
// Not explicitly exported, but not static so it can be used in unit tests.
bool ReadSymbolDataInternal(const uint8_t* obj_file,
const string& obj_filename,
const string& obj_os,
const std::vector<string>& debug_dirs,
const DumpOptions& options,
Module** module) {
if (!IsValidElf(obj_file)) {
fprintf(stderr, "Not a valid ELF file: %s\n", obj_filename.c_str());
return false;
}
int elfclass = ElfClass(obj_file);
if (elfclass == ELFCLASS32) {
return ReadSymbolDataElfClass<ElfClass32>(
reinterpret_cast<const Elf32_Ehdr*>(obj_file), obj_filename, obj_os,
debug_dirs, options, module);
}
if (elfclass == ELFCLASS64) {
return ReadSymbolDataElfClass<ElfClass64>(
reinterpret_cast<const Elf64_Ehdr*>(obj_file), obj_filename, obj_os,
debug_dirs, options, module);
}
return false;
}
bool WriteSymbolFile(const string &load_path,
const string &obj_file,
const string &obj_os,
const std::vector<string>& debug_dirs,
const DumpOptions& options,
std::ostream &sym_stream) {
Module* module;
if (!ReadSymbolData(load_path, obj_file, obj_os, debug_dirs, options,
&module))
return false;
bool result = module->Write(sym_stream, options.symbol_data);
delete module;
return result;
}
// Read the selected object file's debugging information, and write out the
// header only to |stream|. Return true on success; if an error occurs, report
// it and return false.
bool WriteSymbolFileHeader(const string& load_path,
const string& obj_file,
const string& obj_os,
std::ostream &sym_stream) {
MmapWrapper map_wrapper;
void* elf_header = NULL;
if (!LoadELF(load_path, &map_wrapper, &elf_header)) {
fprintf(stderr, "Could not load ELF file: %s\n", obj_file.c_str());
return false;
}
if (!IsValidElf(elf_header)) {
fprintf(stderr, "Not a valid ELF file: %s\n", obj_file.c_str());
return false;
}
int elfclass = ElfClass(elf_header);
scoped_ptr<Module> module;
if (elfclass == ELFCLASS32) {
if (!InitModuleForElfClass<ElfClass32>(
reinterpret_cast<const Elf32_Ehdr*>(elf_header), obj_file, obj_os,
module)) {
fprintf(stderr, "Failed to load ELF module: %s\n", obj_file.c_str());
return false;
}
} else if (elfclass == ELFCLASS64) {
if (!InitModuleForElfClass<ElfClass64>(
reinterpret_cast<const Elf64_Ehdr*>(elf_header), obj_file, obj_os,
module)) {
fprintf(stderr, "Failed to load ELF module: %s\n", obj_file.c_str());
return false;
}
} else {
fprintf(stderr, "Unsupported module file: %s\n", obj_file.c_str());
return false;
}
return module->Write(sym_stream, ALL_SYMBOL_DATA);
}
bool ReadSymbolData(const string& load_path,
const string& obj_file,
const string& obj_os,
const std::vector<string>& debug_dirs,
const DumpOptions& options,
Module** module) {
MmapWrapper map_wrapper;
void* elf_header = NULL;
if (!LoadELF(load_path, &map_wrapper, &elf_header))
return false;
return ReadSymbolDataInternal(reinterpret_cast<uint8_t*>(elf_header),
obj_file, obj_os, debug_dirs, options, module);
}
} // namespace google_breakpad