Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "jit/arm/Simulator-arm.h"
#include "mozilla/Casting.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Likely.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/arm/Assembler-arm.h"
#include "jit/arm/disasm/Constants-arm.h"
#include "jit/AtomicOperations.h"
#include "js/UniquePtr.h"
#include "js/Utility.h"
#include "threading/LockGuard.h"
#include "vm/JSContext.h"
#include "vm/Runtime.h"
#include "vm/SharedMem.h"
#include "wasm/WasmInstance.h"
#include "wasm/WasmSignalHandlers.h"
extern "C" {
MOZ_EXPORT int64_t __aeabi_idivmod(int x, int y) {
// Run-time ABI for the ARM architecture specifies that for |INT_MIN / -1|
// "an implementation is (sic) may return any convenient value, possibly the
// original numerator."
//
// |INT_MIN / -1| traps on x86, which isn't listed as an allowed behavior in
// the ARM docs, so instead follow LLVM and return the numerator. (And zero
// for the remainder.)
if (x == INT32_MIN && y == -1) {
return uint32_t(x);
}
uint32_t lo = uint32_t(x / y);
uint32_t hi = uint32_t(x % y);
return (int64_t(hi) << 32) | lo;
}
MOZ_EXPORT int64_t __aeabi_uidivmod(int x, int y) {
uint32_t lo = uint32_t(x) / uint32_t(y);
uint32_t hi = uint32_t(x) % uint32_t(y);
return (int64_t(hi) << 32) | lo;
}
}
namespace js {
namespace jit {
// For decoding load-exclusive and store-exclusive instructions.
namespace excl {
// Bit positions.
enum {
ExclusiveOpHi = 24, // Hi bit of opcode field
ExclusiveOpLo = 23, // Lo bit of opcode field
ExclusiveSizeHi = 22, // Hi bit of operand size field
ExclusiveSizeLo = 21, // Lo bit of operand size field
ExclusiveLoad = 20 // Bit indicating load
};
// Opcode bits for exclusive instructions.
enum { ExclusiveOpcode = 3 };
// Operand size, Bits(ExclusiveSizeHi,ExclusiveSizeLo).
enum {
ExclusiveWord = 0,
ExclusiveDouble = 1,
ExclusiveByte = 2,
ExclusiveHalf = 3
};
} // namespace excl
// Load/store multiple addressing mode.
enum BlockAddrMode {
// Alias modes for comparison when writeback does not matter.
da_x = (0 | 0 | 0) << 21, // Decrement after.
ia_x = (0 | 4 | 0) << 21, // Increment after.
db_x = (8 | 0 | 0) << 21, // Decrement before.
ib_x = (8 | 4 | 0) << 21, // Increment before.
};
// Type of VFP register. Determines register encoding.
enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1 };
enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 };
// Supervisor Call (svc) specific support.
// Special Software Interrupt codes when used in the presence of the ARM
// simulator.
// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
enum SoftwareInterruptCodes {
kCallRtRedirected = 0x10, // Transition to C code.
kBreakpoint = 0x20, // Breakpoint.
kStopCode = 1 << 23 // Stop.
};
const uint32_t kStopCodeMask = kStopCode - 1;
const uint32_t kMaxStopCode = kStopCode - 1;
// -----------------------------------------------------------------------------
// Instruction abstraction.
// The class Instruction enables access to individual fields defined in the ARM
// architecture instruction set encoding as described in figure A3-1.
// Note that the Assembler uses typedef int32_t Instr.
//
// Example: Test whether the instruction at ptr does set the condition code
// bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
// Instruction* instr = Instruction::At(ptr);
// int type = instr->TypeValue();
// return ((type == 0) || (type == 1)) && instr->hasS();
// }
//
class SimInstruction {
public:
enum { kInstrSize = 4, kPCReadOffset = 8 };
// Get the raw instruction bits.
inline Instr instructionBits() const {
return *reinterpret_cast<const Instr*>(this);
}
// Set the raw instruction bits to value.
inline void setInstructionBits(Instr value) {
*reinterpret_cast<Instr*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int bit(int nr) const { return (instructionBits() >> nr) & 1; }
// Read a bit field's value out of the instruction bits.
inline int bits(int hi, int lo) const {
return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1);
}
// Read a bit field out of the instruction bits.
inline int bitField(int hi, int lo) const {
return instructionBits() & (((2 << (hi - lo)) - 1) << lo);
}
// Accessors for the different named fields used in the ARM encoding.
// The naming of these accessor corresponds to figure A3-1.
//
// Two kind of accessors are declared:
// - <Name>Field() will return the raw field, i.e. the field's bits at their
// original place in the instruction encoding.
// e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
// 0xC0810002 conditionField(instr) will return 0xC0000000.
// - <Name>Value() will return the field value, shifted back to bit 0.
// e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
// 0xC0810002 conditionField(instr) will return 0xC.
// Generally applicable fields
inline Assembler::ARMCondition conditionField() const {
return static_cast<Assembler::ARMCondition>(bitField(31, 28));
}
inline int typeValue() const { return bits(27, 25); }
inline int specialValue() const { return bits(27, 23); }
inline int rnValue() const { return bits(19, 16); }
inline int rdValue() const { return bits(15, 12); }
inline int coprocessorValue() const { return bits(11, 8); }
// Support for VFP.
// Vn(19-16) | Vd(15-12) | Vm(3-0)
inline int vnValue() const { return bits(19, 16); }
inline int vmValue() const { return bits(3, 0); }
inline int vdValue() const { return bits(15, 12); }
inline int nValue() const { return bit(7); }
inline int mValue() const { return bit(5); }
inline int dValue() const { return bit(22); }
inline int rtValue() const { return bits(15, 12); }
inline int pValue() const { return bit(24); }
inline int uValue() const { return bit(23); }
inline int opc1Value() const { return (bit(23) << 2) | bits(21, 20); }
inline int opc2Value() const { return bits(19, 16); }
inline int opc3Value() const { return bits(7, 6); }
inline int szValue() const { return bit(8); }
inline int VLValue() const { return bit(20); }
inline int VCValue() const { return bit(8); }
inline int VAValue() const { return bits(23, 21); }
inline int VBValue() const { return bits(6, 5); }
inline int VFPNRegValue(VFPRegPrecision pre) {
return VFPGlueRegValue(pre, 16, 7);
}
inline int VFPMRegValue(VFPRegPrecision pre) {
return VFPGlueRegValue(pre, 0, 5);
}
inline int VFPDRegValue(VFPRegPrecision pre) {
return VFPGlueRegValue(pre, 12, 22);
}
// Fields used in Data processing instructions.
inline int opcodeValue() const { return static_cast<ALUOp>(bits(24, 21)); }
inline ALUOp opcodeField() const {
return static_cast<ALUOp>(bitField(24, 21));
}
inline int sValue() const { return bit(20); }
// With register.
inline int rmValue() const { return bits(3, 0); }
inline ShiftType shifttypeValue() const {
return static_cast<ShiftType>(bits(6, 5));
}
inline int rsValue() const { return bits(11, 8); }
inline int shiftAmountValue() const { return bits(11, 7); }
// With immediate.
inline int rotateValue() const { return bits(11, 8); }
inline int immed8Value() const { return bits(7, 0); }
inline int immed4Value() const { return bits(19, 16); }
inline int immedMovwMovtValue() const {
return immed4Value() << 12 | offset12Value();
}
// Fields used in Load/Store instructions.
inline int PUValue() const { return bits(24, 23); }
inline int PUField() const { return bitField(24, 23); }
inline int bValue() const { return bit(22); }
inline int wValue() const { return bit(21); }
inline int lValue() const { return bit(20); }
// With register uses same fields as Data processing instructions above with
// immediate.
inline int offset12Value() const { return bits(11, 0); }
// Multiple.
inline int rlistValue() const { return bits(15, 0); }
// Extra loads and stores.
inline int signValue() const { return bit(6); }
inline int hValue() const { return bit(5); }
inline int immedHValue() const { return bits(11, 8); }
inline int immedLValue() const { return bits(3, 0); }
// Fields used in Branch instructions.
inline int linkValue() const { return bit(24); }
inline int sImmed24Value() const { return ((instructionBits() << 8) >> 8); }
// Fields used in Software interrupt instructions.
inline SoftwareInterruptCodes svcValue() const {
return static_cast<SoftwareInterruptCodes>(bits(23, 0));
}
// Test for special encodings of type 0 instructions (extra loads and
// stores, as well as multiplications).
inline bool isSpecialType0() const { return (bit(7) == 1) && (bit(4) == 1); }
// Test for miscellaneous instructions encodings of type 0 instructions.
inline bool isMiscType0() const {
return bit(24) == 1 && bit(23) == 0 && bit(20) == 0 && (bit(7) == 0);
}
// Test for a nop instruction, which falls under type 1.
inline bool isNopType1() const { return bits(24, 0) == 0x0120F000; }
// Test for a nop instruction, which falls under type 1.
inline bool isCsdbType1() const { return bits(24, 0) == 0x0120F014; }
// Test for a stop instruction.
inline bool isStop() const {
return typeValue() == 7 && bit(24) == 1 && svcValue() >= kStopCode;
}
// Test for a udf instruction, which falls under type 3.
inline bool isUDF() const {
return (instructionBits() & 0xfff000f0) == 0xe7f000f0;
}
// Special accessors that test for existence of a value.
inline bool hasS() const { return sValue() == 1; }
inline bool hasB() const { return bValue() == 1; }
inline bool hasW() const { return wValue() == 1; }
inline bool hasL() const { return lValue() == 1; }
inline bool hasU() const { return uValue() == 1; }
inline bool hasSign() const { return signValue() == 1; }
inline bool hasH() const { return hValue() == 1; }
inline bool hasLink() const { return linkValue() == 1; }
// Decoding the double immediate in the vmov instruction.
double doubleImmedVmov() const;
// Decoding the float32 immediate in the vmov.f32 instruction.
float float32ImmedVmov() const;
private:
// Join split register codes, depending on single or double precision.
// four_bit is the position of the least-significant bit of the four
// bit specifier. one_bit is the position of the additional single bit
// specifier.
inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
if (pre == kSinglePrecision) {
return (bits(four_bit + 3, four_bit) << 1) | bit(one_bit);
}
return (bit(one_bit) << 4) | bits(four_bit + 3, four_bit);
}
SimInstruction() = delete;
SimInstruction(const SimInstruction& other) = delete;
void operator=(const SimInstruction& other) = delete;
};
double SimInstruction::doubleImmedVmov() const {
// Reconstruct a double from the immediate encoded in the vmov instruction.
//
// instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh]
// double: [aBbbbbbb,bbcdefgh,00000000,00000000,
// 00000000,00000000,00000000,00000000]
//
// where B = ~b. Only the high 16 bits are affected.
uint64_t high16;
high16 = (bits(17, 16) << 4) | bits(3, 0); // xxxxxxxx,xxcdefgh.
high16 |= (0xff * bit(18)) << 6; // xxbbbbbb,bbxxxxxx.
high16 |= (bit(18) ^ 1) << 14; // xBxxxxxx,xxxxxxxx.
high16 |= bit(19) << 15; // axxxxxxx,xxxxxxxx.
uint64_t imm = high16 << 48;
return mozilla::BitwiseCast<double>(imm);
}
float SimInstruction::float32ImmedVmov() const {
// Reconstruct a float32 from the immediate encoded in the vmov instruction.
//
// instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh]
// float32: [aBbbbbbc, defgh000, 00000000, 00000000]
//
// where B = ~b. Only the high 16 bits are affected.
uint32_t imm;
imm = (bits(17, 16) << 23) | (bits(3, 0) << 19); // xxxxxxxc,defgh000.0.0
imm |= (0x1f * bit(18)) << 25; // xxbbbbbx,xxxxxxxx.0.0
imm |= (bit(18) ^ 1) << 30; // xBxxxxxx,xxxxxxxx.0.0
imm |= bit(19) << 31; // axxxxxxx,xxxxxxxx.0.0
return mozilla::BitwiseCast<float>(imm);
}
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
char* validityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* cachedData(int offset) { return &data_[offset]; }
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
// Protects the icache() and redirection() properties of the
// Simulator.
class AutoLockSimulatorCache : public LockGuard<Mutex> {
using Base = LockGuard<Mutex>;
public:
explicit AutoLockSimulatorCache()
: Base(SimulatorProcess::singleton_->cacheLock_) {}
};
mozilla::Atomic<size_t, mozilla::ReleaseAcquire>
SimulatorProcess::ICacheCheckingDisableCount(
1); // Checking is disabled by default.
SimulatorProcess* SimulatorProcess::singleton_ = nullptr;
int64_t Simulator::StopSimAt = -1L;
Simulator* Simulator::Create() {
auto sim = MakeUnique<Simulator>();
if (!sim) {
return nullptr;
}
if (!sim->init()) {
return nullptr;
}
char* stopAtStr = getenv("ARM_SIM_STOP_AT");
int64_t stopAt;
if (stopAtStr && sscanf(stopAtStr, "%lld", &stopAt) == 1) {
fprintf(stderr, "\nStopping simulation at icount %lld\n", stopAt);
Simulator::StopSimAt = stopAt;
}
return sim.release();
}
void Simulator::Destroy(Simulator* sim) { js_delete(sim); }
void Simulator::disassemble(SimInstruction* instr, size_t n) {
#ifdef JS_DISASM_ARM
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
while (n-- > 0) {
dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(instr));
fprintf(stderr, " 0x%08x %s\n", uint32_t(instr), buffer.start());
instr = reinterpret_cast<SimInstruction*>(
reinterpret_cast<uint8_t*>(instr) + 4);
}
#endif
}
void Simulator::disasm(SimInstruction* instr) { disassemble(instr, 1); }
void Simulator::disasm(SimInstruction* instr, size_t n) {
disassemble(instr, n);
}
void Simulator::disasm(SimInstruction* instr, size_t m, size_t n) {
disassemble(reinterpret_cast<SimInstruction*>(
reinterpret_cast<uint8_t*>(instr) - m * 4),
n);
}
// The ArmDebugger class is used by the simulator while debugging simulated ARM
// code.
class ArmDebugger {
public:
explicit ArmDebugger(Simulator* sim) : sim_(sim) {}
void stop(SimInstruction* instr);
void debug();
private:
static const Instr kBreakpointInstr =
(Assembler::AL | (7 * (1 << 25)) | (1 * (1 << 24)) | kBreakpoint);
static const Instr kNopInstr = (Assembler::AL | (13 * (1 << 21)));
Simulator* sim_;
int32_t getRegisterValue(int regnum);
double getRegisterPairDoubleValue(int regnum);
void getVFPDoubleRegisterValue(int regnum, double* value);
bool getValue(const char* desc, int32_t* value);
bool getVFPDoubleValue(const char* desc, double* value);
// Set or delete a breakpoint. Returns true if successful.
bool setBreakpoint(SimInstruction* breakpc);
bool deleteBreakpoint(SimInstruction* breakpc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void undoBreakpoints();
void redoBreakpoints();
};
void ArmDebugger::stop(SimInstruction* instr) {
// Get the stop code.
uint32_t code = instr->svcValue() & kStopCodeMask;
// Retrieve the encoded address, which comes just after this stop.
char* msg =
*reinterpret_cast<char**>(sim_->get_pc() + SimInstruction::kInstrSize);
// Update this stop description.
if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
sim_->watched_stops_[code].desc = msg;
}
// Print the stop message and code if it is not the default code.
if (code != kMaxStopCode) {
printf("Simulator hit stop %u: %s\n", code, msg);
} else {
printf("Simulator hit %s\n", msg);
}
sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize);
debug();
}
int32_t ArmDebugger::getRegisterValue(int regnum) {
if (regnum == Registers::pc) {
return sim_->get_pc();
}
return sim_->get_register(regnum);
}
double ArmDebugger::getRegisterPairDoubleValue(int regnum) {
return sim_->get_double_from_register_pair(regnum);
}
void ArmDebugger::getVFPDoubleRegisterValue(int regnum, double* out) {
sim_->get_double_from_d_register(regnum, out);
}
bool ArmDebugger::getValue(const char* desc, int32_t* value) {
Register reg = Register::FromName(desc);
if (reg != InvalidReg) {
*value = getRegisterValue(reg.code());
return true;
}
if (strncmp(desc, "0x", 2) == 0) {
return sscanf(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
}
return sscanf(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
}
bool ArmDebugger::getVFPDoubleValue(const char* desc, double* value) {
FloatRegister reg = FloatRegister::FromCode(FloatRegister::FromName(desc));
if (reg.isInvalid()) {
return false;
}
if (reg.isSingle()) {
float fval;
sim_->get_float_from_s_register(reg.id(), &fval);
*value = fval;
return true;
}
sim_->get_double_from_d_register(reg.id(), value);
return true;
}
bool ArmDebugger::setBreakpoint(SimInstruction* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->instructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool ArmDebugger::deleteBreakpoint(SimInstruction* breakpc) {
if (sim_->break_pc_ != nullptr) {
sim_->break_pc_->setInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = nullptr;
sim_->break_instr_ = 0;
return true;
}
void ArmDebugger::undoBreakpoints() {
if (sim_->break_pc_) {
sim_->break_pc_->setInstructionBits(sim_->break_instr_);
}
}
void ArmDebugger::redoBreakpoints() {
if (sim_->break_pc_) {
sim_->break_pc_->setInstructionBits(kBreakpointInstr);
}
}
static char* ReadLine(const char* prompt) {
UniqueChars result;
char line_buf[256];
int offset = 0;
bool keep_going = true;
fprintf(stdout, "%s", prompt);
fflush(stdout);
while (keep_going) {
if (fgets(line_buf, sizeof(line_buf), stdin) == nullptr) {
// fgets got an error. Just give up.
return nullptr;
}
int len = strlen(line_buf);
if (len > 0 && line_buf[len - 1] == '\n') {
// Since we read a new line we are done reading the line. This will
// exit the loop after copying this buffer into the result.
keep_going = false;
}
if (!result) {
// Allocate the initial result and make room for the terminating
// '\0'.
result.reset(js_pod_malloc<char>(len + 1));
if (!result) {
return nullptr;
}
} else {
// Allocate a new result with enough room for the new addition.
int new_len = offset + len + 1;
char* new_result = js_pod_malloc<char>(new_len);
if (!new_result) {
return nullptr;
}
// Copy the existing input into the new array and set the new
// array as the result.
memcpy(new_result, result.get(), offset * sizeof(char));
result.reset(new_result);
}
// Copy the newly read line into the result.
memcpy(result.get() + offset, line_buf, len * sizeof(char));
offset += len;
}
MOZ_ASSERT(result);
result[offset] = '\0';
return result.release();
}
void ArmDebugger::debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = {cmd, arg1, arg2};
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
undoBreakpoints();
#ifndef JS_DISASM_ARM
static bool disasm_warning_printed = false;
if (!disasm_warning_printed) {
printf(
" No ARM disassembler present. Enable JS_DISASM_ARM in "
"configure.in.");
disasm_warning_printed = true;
}
#endif
while (!done && !sim_->has_bad_pc()) {
if (last_pc != sim_->get_pc()) {
#ifdef JS_DISASM_ARM
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<uint8_t*>(sim_->get_pc()));
printf(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
#endif
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == nullptr) {
break;
} else {
char* last_input = sim_->lastDebuggerInput();
if (strcmp(line, "\n") == 0 && last_input != nullptr) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->setLastDebuggerInput(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = sscanf(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if (argc < 0) {
continue;
} else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
sim_->instructionDecode(
reinterpret_cast<SimInstruction*>(sim_->get_pc()));
sim_->icount_++;
} else if ((strcmp(cmd, "skip") == 0)) {
sim_->set_pc(sim_->get_pc() + 4);
sim_->icount_++;
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints
// disabled.
sim_->instructionDecode(
reinterpret_cast<SimInstruction*>(sim_->get_pc()));
sim_->icount_++;
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
int32_t value;
double dvalue;
if (strcmp(arg1, "all") == 0) {
for (uint32_t i = 0; i < Registers::Total; i++) {
value = getRegisterValue(i);
printf("%3s: 0x%08x %10d", Registers::GetName(i), value, value);
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
(i % 2) == 0) {
dvalue = getRegisterPairDoubleValue(i);
printf(" (%.16g)\n", dvalue);
} else {
printf("\n");
}
}
for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) {
getVFPDoubleRegisterValue(i, &dvalue);
uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue);
printf("%3s: %.16g 0x%08x %08x\n",
FloatRegister::FromCode(i).name(), dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xffffffff));
}
} else {
if (getValue(arg1, &value)) {
printf("%s: 0x%08x %d \n", arg1, value, value);
} else if (getVFPDoubleValue(arg1, &dvalue)) {
uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue);
printf("%s: %.16g 0x%08x %08x\n", arg1, dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xffffffff));
} else {
printf("%s unrecognized\n", arg1);
}
}
} else {
printf("print <register>\n");
}
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
int32_t* cur = nullptr;
int32_t* end = nullptr;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
} else { // "mem"
int32_t value;
if (!getValue(arg1, &value)) {
printf("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int32_t*>(value);
next_arg++;
}
int32_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!getValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
while (cur < end) {
printf(" %p: 0x%08x %10d", cur, *cur, *cur);
printf("\n");
cur++;
}
} else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
#ifdef JS_DISASM_ARM
uint8_t* prev = nullptr;
uint8_t* cur = nullptr;
uint8_t* end = nullptr;
if (argc == 1) {
cur = reinterpret_cast<uint8_t*>(sim_->get_pc());
end = cur + (10 * SimInstruction::kInstrSize);
} else if (argc == 2) {
Register reg = Register::FromName(arg1);
if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
int32_t value;
if (getValue(arg1, &value)) {
cur = reinterpret_cast<uint8_t*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * SimInstruction::kInstrSize);
}
} else {
// The argument is the number of instructions.
int32_t value;
if (getValue(arg1, &value)) {
cur = reinterpret_cast<uint8_t*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * SimInstruction::kInstrSize);
}
}
} else {
int32_t value1;
int32_t value2;
if (getValue(arg1, &value1) && getValue(arg2, &value2)) {
cur = reinterpret_cast<uint8_t*>(value1);
end = cur + (value2 * SimInstruction::kInstrSize);
}
}
while (cur < end) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
prev = cur;
cur += dasm.InstructionDecode(buffer, cur);
printf(" 0x%08x %s\n", reinterpret_cast<uint32_t>(prev),
buffer.start());
}
#endif
} else if (strcmp(cmd, "gdb") == 0) {
printf("relinquishing control to gdb\n");
#ifdef _MSC_VER
__debugbreak();
#else
asm("int $3");
#endif
printf("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
int32_t value;
if (getValue(arg1, &value)) {
if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) {
printf("setting breakpoint failed\n");
}
} else {
printf("%s unrecognized\n", arg1);
}
} else {
printf("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!deleteBreakpoint(nullptr)) {
printf("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "flags") == 0) {
printf("N flag: %d; ", sim_->n_flag_);
printf("Z flag: %d; ", sim_->z_flag_);
printf("C flag: %d; ", sim_->c_flag_);
printf("V flag: %d\n", sim_->v_flag_);
printf("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
printf("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
printf("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
printf("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
printf("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
} else if (strcmp(cmd, "stop") == 0) {
int32_t value;
intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize;
SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc);
SimInstruction* msg_address = reinterpret_cast<SimInstruction*>(
stop_pc + SimInstruction::kInstrSize);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->isStopInstruction(stop_instr)) {
stop_instr->setInstructionBits(kNopInstr);
msg_address->setInstructionBits(kNopInstr);
} else {
printf("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
printf("Stop information:\n");
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->printStopInfo(i);
}
} else if (getValue(arg2, &value)) {
sim_->printStopInfo(value);
} else {
printf("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->enableStop(i);
}
} else if (getValue(arg2, &value)) {
sim_->enableStop(value);
} else {
printf("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->disableStop(i);
}
} else if (getValue(arg2, &value)) {
sim_->disableStop(value);
} else {
printf("Unrecognized argument.\n");
}
}
} else {
printf("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
printf("cont\n");
printf(" continue execution (alias 'c')\n");
printf("skip\n");
printf(" skip one instruction (set pc to next instruction)\n");
printf("stepi\n");
printf(" step one instruction (alias 'si')\n");
printf("print <register>\n");
printf(" print register content (alias 'p')\n");
printf(" use register name 'all' to print all registers\n");
printf(" add argument 'fp' to print register pair double values\n");
printf("flags\n");
printf(" print flags\n");
printf("stack [<words>]\n");
printf(" dump stack content, default dump 10 words)\n");
printf("mem <address> [<words>]\n");
printf(" dump memory content, default dump 10 words)\n");
printf("disasm [<instructions>]\n");
printf("disasm [<address/register>]\n");
printf("disasm [[<address/register>] <instructions>]\n");
printf(" disassemble code, default is 10 instructions\n");
printf(" from pc (alias 'di')\n");
printf("gdb\n");
printf(" enter gdb\n");
printf("break <address>\n");
printf(" set a break point on the address\n");
printf("del\n");
printf(" delete the breakpoint\n");
printf("stop feature:\n");
printf(" Description:\n");
printf(" Stops are debug instructions inserted by\n");
printf(" the Assembler::stop() function.\n");
printf(" When hitting a stop, the Simulator will\n");
printf(" stop and and give control to the ArmDebugger.\n");
printf(" The first %d stop codes are watched:\n",
Simulator::kNumOfWatchedStops);
printf(" - They can be enabled / disabled: the Simulator\n");
printf(" will / won't stop when hitting them.\n");
printf(" - The Simulator keeps track of how many times they \n");
printf(" are met. (See the info command.) Going over a\n");
printf(" disabled stop still increases its counter. \n");
printf(" Commands:\n");
printf(" stop info all/<code> : print infos about number <code>\n");
printf(" or all stop(s).\n");
printf(" stop enable/disable all/<code> : enables / disables\n");
printf(" all or number <code> stop(s)\n");
printf(" stop unstop\n");
printf(" ignore the stop instruction at the current location\n");
printf(" from now on\n");
} else {
printf("Unknown command: %s\n", cmd);
}
}
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
redoBreakpoints();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache,
void* page) {
SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page);
if (p) {
return p->value();
}
AutoEnterOOMUnsafeRegion oomUnsafe;
CachePage* new_page = js_new<CachePage>();
if (!new_page || !i_cache.add(p, page, new_page)) {
oomUnsafe.crash("Simulator CachePage");
}
return new_page;
}
// Flush from start up to and not including start + size.
static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache,
intptr_t start, int size) {
MOZ_ASSERT(size <= CachePage::kPageSize);
MOZ_ASSERT(AllOnOnePage(start, size - 1));
MOZ_ASSERT((start & CachePage::kLineMask) == 0);
MOZ_ASSERT((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePageLocked(i_cache, page);
char* valid_bytemap = cache_page->validityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache,
void* start_addr, size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePageLocked(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
MOZ_ASSERT((start & CachePage::kPageMask) == 0);
offset = 0;
}
if (size != 0) {
FlushOnePageLocked(i_cache, start, size);
}
}
/* static */
void SimulatorProcess::checkICacheLocked(SimInstruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePageLocked(icache(), page);
char* cache_valid_byte = cache_page->validityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
mozilla::DebugOnly<int> cmpret =
memcmp(reinterpret_cast<void*>(instr), cache_page->cachedData(offset),
SimInstruction::kInstrSize);
MOZ_ASSERT(cmpret == 0);
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(l)) >> 2;
}
bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) {
MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0);
MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0);
return k == l;
}
void Simulator::setLastDebuggerInput(char* input) {
js_free(lastDebuggerInput_);
lastDebuggerInput_ = input;
}
/* static */
void SimulatorProcess::FlushICache(void* start_addr, size_t size) {
JitSpewCont(JitSpew_CacheFlush, "[%p %zx]", start_addr, size);
if (!ICacheCheckingDisableCount) {
AutoLockSimulatorCache als;
js::jit::FlushICacheLocked(icache(), start_addr, size);
}
}
Simulator::Simulator() {
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
// Note, allocation and anything that depends on allocated memory is
// deferred until init(), in order to handle OOM properly.
stack_ = nullptr;
stackLimit_ = 0;
pc_modified_ = false;
icount_ = 0L;
break_pc_ = nullptr;
break_instr_ = 0;
single_stepping_ = false;
single_step_callback_ = nullptr;
single_step_callback_arg_ = nullptr;
skipCalleeSavedRegsCheck = false;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < num_registers; i++) {
registers_[i] = 0;
}
n_flag_ = false;
z_flag_ = false;
c_flag_ = false;
v_flag_ = false;
for (int i = 0; i < num_d_registers * 2; i++) {
vfp_registers_[i] = 0;
}
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = false;
v_flag_FPSCR_ = false;
FPSCR_rounding_mode_ = SimRZ;
FPSCR_default_NaN_mode_ = true;
inv_op_vfp_flag_ = false;
div_zero_vfp_flag_ = false;
overflow_vfp_flag_ = false;
underflow_vfp_flag_ = false;
inexact_vfp_flag_ = false;
// The lr and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_lr;
registers_[lr] = bad_lr;
lastDebuggerInput_ = nullptr;
exclusiveMonitorHeld_ = false;
exclusiveMonitor_ = 0;
}
bool Simulator::init() {
// Allocate 2MB for the stack. Note that we will only use 1MB, see below.
static const size_t stackSize = 2 * 1024 * 1024;
stack_ = js_pod_malloc<char>(stackSize);
if (!stack_) {
return false;
}
// Leave a safety margin of 1MB to prevent overrunning the stack when
// pushing values (total stack size is 2MB).
stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024;
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int32_t>(stack_) + stackSize - 64;
return true;
}
// When the generated code calls a VM function (masm.callWithABI) we need to
// call that function instead of trying to execute it with the simulator
// (because it's x86 code instead of arm code). We do that by redirecting the VM
// call to a svc (Supervisor Call) instruction that is handled by the
// simulator. We write the original destination of the jump just at a known
// offset from the svc instruction so the simulator knows what to call.
class Redirection {
friend class SimulatorProcess;
// sim's lock must already be held.
Redirection(void* nativeFunction, ABIFunctionType type)
: nativeFunction_(nativeFunction),
swiInstruction_(Assembler::AL | (0xf * (1 << 24)) | kCallRtRedirected),
type_(type),
next_(nullptr) {
next_ = SimulatorProcess::redirection();
if (!SimulatorProcess::ICacheCheckingDisableCount) {
FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(),
SimInstruction::kInstrSize);
}
SimulatorProcess::setRedirection(this);
}
public:
void* addressOfSwiInstruction() { return &swiInstruction_; }
void* nativeFunction() const { return nativeFunction_; }
ABIFunctionType type() const { return type_; }
static Redirection* Get(void* nativeFunction, ABIFunctionType type) {
AutoLockSimulatorCache als;
Redirection* current = SimulatorProcess::redirection();
for (; current != nullptr; current = current->next_) {
if (current->nativeFunction_ == nativeFunction) {
MOZ_ASSERT(current->type() == type);
return current;
}
}
// Note: we can't use js_new here because the constructor is private.
AutoEnterOOMUnsafeRegion oomUnsafe;
Redirection* redir = js_pod_malloc<Redirection>(1);
if (!redir) {
oomUnsafe.crash("Simulator redirection");
}
new (redir) Redirection(nativeFunction, type);
return redir;
}
static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) {
uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction);
uint8_t* addrOfRedirection =
addrOfSwi - offsetof(Redirection, swiInstruction_);
return reinterpret_cast<Redirection*>(addrOfRedirection);
}
private:
void* nativeFunction_;
uint32_t swiInstruction_;
ABIFunctionType type_;
Redirection* next_;
};
Simulator::~Simulator() { js_free(stack_); }
SimulatorProcess::SimulatorProcess()
: cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) {
if (getenv("ARM_SIM_ICACHE_CHECKS")) {
ICacheCheckingDisableCount = 0;
}
}
SimulatorProcess::~SimulatorProcess() {
Redirection* r = redirection_;
while (r) {
Redirection* next = r->next_;
js_delete(r);
r = next;
}
}
/* static */
void* Simulator::RedirectNativeFunction(void* nativeFunction,
ABIFunctionType type) {
Redirection* redirection = Redirection::Get(nativeFunction, type);
return redirection->addressOfSwiInstruction();
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
MOZ_ASSERT(reg >= 0 && reg < num_registers);
if (reg == pc) {
pc_modified_ = true;
}
registers_[reg] = value;
}
// Get the register from the architecture state. This function does handle the
// special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
MOZ_ASSERT(reg >= 0 && reg < num_registers);
if (reg >= num_registers) return 0;
return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0);
}
double Simulator::get_double_from_register_pair(int reg) {
MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0);
// Read the bits from the unsigned integer register_[] array into the double
// precision floating point value and return it.
double dm_val = 0.0;
char buffer[2 * sizeof(vfp_registers_[0])];
memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
return dm_val;
}
void Simulator::set_register_pair_from_double(int reg, double* value) {
MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0);
memcpy(registers_ + reg, value, sizeof(*value));
}
void Simulator::set_dw_register(int dreg, const int* dbl) {
MOZ_ASSERT(dreg >= 0 && dreg < num_d_registers);
registers_[dreg] = dbl[0];
registers_[dreg + 1] = dbl[1];
}
void Simulator::get_d_register(int dreg, uint64_t* value) {
MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys));
memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value));
}
void Simulator::set_d_register(int dreg, const uint64_t* value) {
MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys));
memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value));
}
void Simulator::get_d_register(int dreg, uint32_t* value) {
MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys));
memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2);
}
void Simulator::set_d_register(int dreg, const uint32_t* value) {
MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys));
memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2);
}
void Simulator::get_q_register(int qreg, uint64_t* value) {
MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers);
memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2);
}
void Simulator::set_q_register(int qreg, const uint64_t* value) {
MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers);
memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2);
}
void Simulator::get_q_register(int qreg, uint32_t* value) {
MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers);
memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4);
}
void Simulator::set_q_register(int qreg, const uint32_t* value) {
MOZ_ASSERT((qreg >= 0) && (qreg < num_q_registers));
memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4);
}
void Simulator::set_pc(int32_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
bool Simulator::has_bad_pc() const {
return registers_[pc] == bad_lr || registers_[pc] == end_sim_pc;
}
// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const { return registers_[pc]; }
void Simulator::set_s_register(int sreg, unsigned int value) {
MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers);
vfp_registers_[sreg] = value;
}
unsigned Simulator::get_s_register(int sreg) const {
MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers);
return vfp_registers_[sreg];
}
template <class InputType, int register_size>
void Simulator::setVFPRegister(int reg_index, const InputType& value) {
MOZ_ASSERT(reg_index >= 0);
MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers);
MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys));
char buffer[register_size * sizeof(vfp_registers_[0])];
memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0]));
memcpy(&vfp_registers_[reg_index * register_size], buffer,
register_size * sizeof(vfp_registers_[0]));
}
template <class ReturnType, int register_size>
void Simulator::getFromVFPRegister(int reg_index, ReturnType* out) {
MOZ_ASSERT(reg_index >= 0);
MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers);
MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys));
char buffer[register_size * sizeof(vfp_registers_[0])];
memcpy(buffer, &vfp_registers_[register_size * reg_index],
register_size * sizeof(vfp_registers_[0]));
memcpy(out, buffer, register_size * sizeof(vfp_registers_[0]));
}
// These forced-instantiations are for jsapi-tests. Evidently, nothing
// requires these to be instantiated.
template void Simulator::getFromVFPRegister<double, 2>(int reg_index,
double* out);
template void Simulator::getFromVFPRegister<float, 1>(int reg_index,
float* out);
template void Simulator::setVFPRegister<double, 2>(int reg_index,
const double& value);
template void Simulator::setVFPRegister<float, 1>(int reg_index,
const float& value);
void Simulator::getFpArgs(double* x, double* y, int32_t* z) {
if (UseHardFpABI()) {
get_double_from_d_register(0, x);
get_double_from_d_register(1, y);
*z = get_register(0);
} else {
*x = get_double_from_register_pair(0);
*y = get_double_from_register_pair(2);
*z = get_register(2);
}
}
void Simulator::getFpFromStack(int32_t* stack, double* x) {
MOZ_ASSERT(stack && x);
char buffer[2 * sizeof(stack[0])];
memcpy(buffer, stack, 2 * sizeof(stack[0]));
memcpy(x, buffer, 2 * sizeof(stack[0]));
}
void Simulator::setCallResultDouble(double result) {
// The return value is either in r0/r1 or d0.
if (UseHardFpABI()) {
char buffer[2 * sizeof(vfp_registers_[0])];
memcpy(buffer, &result, sizeof(buffer));
// Copy result to d0.
memcpy(vfp_registers_, buffer, sizeof(buffer));
} else {
char buffer[2 * sizeof(registers_[0])];
memcpy(buffer, &result, sizeof(buffer));
// Copy result to r0 and r1.
memcpy(registers_, buffer, sizeof(buffer));
}
}
void Simulator::setCallResultFloat(float result) {
if (UseHardFpABI()) {
char buffer[sizeof(registers_[0])];
memcpy(buffer, &result, sizeof(buffer));
// Copy result to s0.
memcpy(vfp_registers_, buffer, sizeof(buffer));
} else {
char buffer[sizeof(registers_[0])];
memcpy(buffer, &result, sizeof(buffer));
// Copy result to r0.
memcpy(registers_, buffer, sizeof(buffer));
}
}
void Simulator::setCallResult(int64_t res) {
set_register(r0, static_cast<int32_t>(res));
set_register(r1, static_cast<int32_t>(res >> 32));
}
void Simulator::exclusiveMonitorSet(uint64_t value) {
exclusiveMonitor_ = value;
exclusiveMonitorHeld_ = true;
}
uint64_t Simulator::exclusiveMonitorGetAndClear(bool* held) {
*held = exclusiveMonitorHeld_;
exclusiveMonitorHeld_ = false;
return *held ? exclusiveMonitor_ : 0;
}
void Simulator::exclusiveMonitorClear() { exclusiveMonitorHeld_ = false; }
JS::ProfilingFrameIterator::RegisterState Simulator::registerState() {
wasm::RegisterState state;
state.pc = (void*)get_pc();
state.fp = (void*)get_register(fp);
state.sp = (void*)get_register(sp);
state.lr = (void*)get_register(lr);
return state;
}
uint64_t Simulator::readQ(int32_t addr, SimInstruction* instr,
UnalignedPolicy f) {
if (handleWasmSegFault(addr, 8)) {
return UINT64_MAX;
}
if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) {
uint64_t* ptr = reinterpret_cast<uint64_t*>(addr);
return *ptr;
}
// See the comments below in readW.
if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
char* ptr = reinterpret_cast<char*>(addr);
uint64_t value;
memcpy(&value, ptr, sizeof(value));
return value;
}
printf("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
MOZ_CRASH();
}
void Simulator::writeQ(int32_t addr, uint64_t value, SimInstruction* instr,
UnalignedPolicy f) {
if (handleWasmSegFault(addr, 8)) {
return;
}
if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) {
uint64_t* ptr = reinterpret_cast<uint64_t*>(addr);
*ptr = value;
return;
}
// See the comments below in readW.
if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
char* ptr = reinterpret_cast<char*>(addr);
memcpy(ptr, &value, sizeof(value));
return;
}
printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
MOZ_CRASH();
}
int Simulator::readW(int32_t addr, SimInstruction* instr, UnalignedPolicy f) {
if (handleWasmSegFault(addr, 4)) {
return -1;
}
if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
return *ptr;
}
// In WebAssembly, we want unaligned accesses to either raise a signal or
// do the right thing. Making this simulator properly emulate the behavior
// of raising a signal is complex, so as a special-case, when in wasm code,
// we just do the right thing.
if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
char* ptr = reinterpret_cast<char*>(addr);
int value;
memcpy(&value, ptr, sizeof(value));
return value;
}
printf("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
MOZ_CRASH();
}
void Simulator::writeW(int32_t addr, int value, SimInstruction* instr,
UnalignedPolicy f) {
if (handleWasmSegFault(addr, 4)) {
return;
}
if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
*ptr = value;
return;
}
// See the comments above in readW.
if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
char* ptr = reinterpret_cast<char*>(addr);
memcpy(ptr, &value, sizeof(value));
return;
}
printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
MOZ_CRASH();
}
// For the time being, define Relaxed operations in terms of SeqCst
// operations - we don't yet need Relaxed operations anywhere else in
// the system, and the distinction is not important to the simulation
// at the level where we're operating.
template <typename T>
static T loadRelaxed(SharedMem<T*> addr) {
return AtomicOperations::loadSeqCst(addr);
}
template <typename T>
static T compareExchangeRelaxed(SharedMem<T*> addr, T oldval, T newval) {
return AtomicOperations::compareExchangeSeqCst(addr, oldval, newval);
}
int Simulator::readExW(int32_t addr, SimInstruction* instr) {
if (addr & 3) {
MOZ_CRASH("Unaligned exclusive read");
}
if (handleWasmSegFault(addr, 4)) {
return -1;
}
SharedMem<int32_t*> ptr =
SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr));
int32_t value = loadRelaxed(ptr);
exclusiveMonitorSet(value);
return value;
}
int32_t Simulator::writeExW(int32_t addr, int value, SimInstruction* instr) {
if (addr & 3) {
MOZ_CRASH("Unaligned exclusive write");
}
if (handleWasmSegFault(addr, 4)) {
return -1;
}
SharedMem<int32_t*> ptr =
SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr));
bool held;
int32_t expected = int32_t(exclusiveMonitorGetAndClear(&held));
if (!held) {
return 1;
}
int32_t old = compareExchangeRelaxed(ptr, expected, int32_t(value));
return old != expected;
}
uint16_t Simulator::readHU(int32_t addr, SimInstruction* instr) {
if (handleWasmSegFault(addr, 2)) {
return UINT16_MAX;
}
// The regexp engine emits unaligned loads, so we don't check for them here
// like most of the other methods do.
if ((addr & 1) == 0 || !HasAlignmentFault()) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
return *ptr;
}
// See comments above in readW.
if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
char* ptr = reinterpret_cast<char*>(addr);
uint16_t value;
memcpy(&value, ptr, sizeof(value));
return value;
}
printf("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr);
MOZ_CRASH();
return 0;
}
int16_t Simulator::readH(int32_t addr, SimInstruction* instr) {
if (handleWasmSegFault(addr, 2)) {
return -1;
}
if ((addr & 1) == 0 || !HasAlignmentFault()) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
return *ptr;
}
// See comments above in readW.
if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
char* ptr = reinterpret_cast<char*>(addr);
int16_t value;
memcpy(&value, ptr, sizeof(value));
return value;
}
printf("Unaligned signed halfword read at 0x%08x\n", addr);
MOZ_CRASH();
return 0;
}
void Simulator::writeH(int32_t addr, uint16_t value, SimInstruction* instr) {
if (handleWasmSegFault(addr, 2)) {
return;
}
if ((addr & 1) == 0 || !HasAlignmentFault()) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
*ptr = value;
return;
}
// See the comments above in readW.
if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
char* ptr = reinterpret_cast<char*>(addr);
memcpy(ptr, &value, sizeof(value));
return;
}
printf("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr);
MOZ_CRASH();
}
void Simulator::writeH(int32_t addr, int16_t value, SimInstruction* instr) {
if (handleWasmSegFault(addr, 2)) {
return;
}
if ((addr & 1) == 0 || !HasAlignmentFault()) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
*ptr = value;
return;
}
// See the comments above in readW.
if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
char* ptr = reinterpret_cast<char*>(addr);
memcpy(ptr, &value, sizeof(value));
return;
}
printf("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr);
MOZ_CRASH();
}
uint16_t Simulator::readExHU(int32_t addr, SimInstruction* instr) {
if (addr & 1) {
MOZ_CRASH("Unaligned exclusive read");
}
if (handleWasmSegFault(addr, 2)) {
return UINT16_MAX;
}
SharedMem<uint16_t*> ptr =
SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr));
uint16_t value = loadRelaxed(ptr);
exclusiveMonitorSet(value);
return value;
}
int32_t Simulator::writeExH(int32_t addr, uint16_t value,
SimInstruction* instr) {
if (addr & 1) {
MOZ_CRASH("Unaligned exclusive write");
}
if (handleWasmSegFault(addr, 2)) {
return -1;
}
SharedMem<uint16_t*> ptr =
SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr));
bool held;
uint16_t expected = uint16_t(exclusiveMonitorGetAndClear(&held));
if (!held) {
return 1;
}
uint16_t old = compareExchangeRelaxed(ptr, expected, value);
return old != expected;
}
uint8_t Simulator::readBU(int32_t addr) {
if (handleWasmSegFault(addr, 1)) {
return UINT8_MAX;
}
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
return *ptr;
}
uint8_t Simulator::readExBU(int32_t addr) {
if (handleWasmSegFault(addr, 1)) {
return UINT8_MAX;
}
SharedMem<uint8_t*> ptr =
SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr));
uint8_t value = loadRelaxed(ptr);
exclusiveMonitorSet(value);
return value;
}
int32_t Simulator::writeExB(int32_t addr, uint8_t value) {
if (handleWasmSegFault(addr, 1)) {
return -1;
}
SharedMem<uint8_t*> ptr =
SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr));
bool held;
uint8_t expected = uint8_t(exclusiveMonitorGetAndClear(&held));
if (!held) {
return 1;
}
uint8_t old = compareExchangeRelaxed(ptr, expected, value);
return old != expected;
}
int8_t Simulator::readB(int32_t addr) {
if (handleWasmSegFault(addr, 1)) {
return -1;
}
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
return *ptr;
}
void Simulator::writeB(int32_t addr, uint8_t value) {
if (handleWasmSegFault(addr, 1)) {
return;
}
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
*ptr = value;
}
void Simulator::writeB(int32_t addr, int8_t value) {
if (handleWasmSegFault(addr, 1)) {
return;
}
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
*ptr = value;
}
int32_t* Simulator::readDW(int32_t addr) {
if (handleWasmSegFault(addr, 8)) {
return nullptr;
}
if ((addr & 3) == 0) {
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
return ptr;
}
printf("Unaligned read at 0x%08x\n", addr);
MOZ_CRASH();
}
void Simulator::writeDW(int32_t addr, int32_t value1, int32_t value2) {
if (handleWasmSegFault(addr, 8)) {
return;
}
if ((addr & 3) == 0) {
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
*ptr++ = value1;
*ptr = value2;
return;
}
printf("Unaligned write at 0x%08x\n", addr);
MOZ_CRASH();
}
int32_t Simulator::readExDW(int32_t addr, int32_t* hibits) {
if (addr & 3) {
MOZ_CRASH("Unaligned exclusive read");
}
if (handleWasmSegFault(addr, 8)) {
return -1;
}
SharedMem<uint64_t*> ptr =
SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr));
// The spec says that the low part of value shall be read from addr and
// the high part shall be read from addr+4. On a little-endian system
// where we read a 64-bit quadword the low part of the value will be in
// the low part of the quadword, and the high part of the value in the
// high part of the quadword.
uint64_t value = loadRelaxed(ptr);
exclusiveMonitorSet(value);
*hibits = int32_t(value >> 32);
return int32_t(value);
}
int32_t Simulator::writeExDW(int32_t addr, int32_t value1, int32_t value2) {
if (addr & 3) {
MOZ_CRASH("Unaligned exclusive write");
}
if (handleWasmSegFault(addr, 8)) {
return -1;
}
SharedMem<uint64_t*> ptr =
SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr));
// The spec says that value1 shall be stored at addr and value2 at
// addr+4. On a little-endian system that means constructing a 64-bit
// value where value1 is in the low half of a 64-bit quadword and value2
// is in the high half of the quadword.
uint64_t value = (uint64_t(value2) << 32) | uint32_t(value1);
bool held;
uint64_t expected = exclusiveMonitorGetAndClear(&held);
if (!held) {
return 1;
}
uint64_t old = compareExchangeRelaxed(ptr, expected, value);
return old != expected;
}
uintptr_t Simulator::stackLimit() const { return stackLimit_; }
uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; }
bool Simulator::overRecursed(uintptr_t newsp) const {
if (newsp == 0) {
newsp = get_register(sp);
}
return newsp <= stackLimit();
}
bool Simulator::overRecursedWithExtra(uint32_t extra) const {
uintptr_t newsp = get_register(sp) - extra;
return newsp <= stackLimit();
}
// Checks if the current instruction should be executed based on its condition
// bits.
bool Simulator::conditionallyExecute(SimInstruction* instr) {
switch (instr->conditionField()) {
case Assembler::EQ:
return z_flag_;
case Assembler::NE:
return !z_flag_;
case Assembler::CS:
return c_flag_;
case Assembler::CC:
return !c_flag_;
case Assembler::MI:
return n_flag_;
case Assembler::PL:
return !n_flag_;
case Assembler::VS:
return v_flag_;
case Assembler::VC:
return !v_flag_;
case Assembler::HI:
return c_flag_ && !z_flag_;
case Assembler::LS:
return !c_flag_ || z_flag_;
case Assembler::GE:
return n_flag_ == v_flag_;
case Assembler::LT:
return n_flag_ != v_flag_;
case Assembler::GT:
return !z_flag_ && (n_flag_ == v_flag_);
case Assembler::LE:
return z_flag_ || (n_flag_ != v_flag_);
case Assembler::AL:
return true;
default:
MOZ_CRASH();
}
return false;
}
// Calculate and set the Negative and Zero flags.
void Simulator::setNZFlags(int32_t val) {
n_flag_ = (val < 0);
z_flag_ = (val == 0);
}
// Set the Carry flag.
void Simulator::setCFlag(bool val) { c_flag_ = val; }
// Set the oVerflow flag.
void Simulator::setVFlag(bool val) { v_flag_ = val; }
// Calculate C flag value for additions.
bool Simulator::carryFrom(int32_t left, int32_t right, int32_t carry) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
uint32_t urest = 0xffffffffU - uleft;
return (uright > urest) ||
(carry && (((uright + 1) > urest) || (uright > (urest - 1))));
}
// Calculate C flag value for subtractions.
bool Simulator::borrowFrom(int32_t left, int32_t right) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
return (uright > uleft);
}
// Calculate V flag value for additions and subtractions.
bool Simulator::overflowFrom(int32_t alu_out, int32_t left, int32_t right,
bool addition) {
bool overflow;
if (addition) {
// Operands have the same sign.
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
// And operands and result have different sign.
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
} else {
// Operands have different signs.
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
// And first operand and result have different signs.
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
}
return overflow;
}
// Support for VFP comparisons.
void Simulator::compute_FPSCR_Flags(double val1, double val2) {
if (std::isnan(val1) || std::isnan(val2)) {
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = true;
// All non-NaN cases.
} else if (val1 == val2) {
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = true;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = false;
} else if (val1 < val2) {
n_flag_FPSCR_ = true;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = false;
v_flag_FPSCR_ = false;
} else {
// Case when (val1 > val2).
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = false;
}
}
void Simulator::copy_FPSCR_to_APSR() {
n_flag_ = n_flag_FPSCR_;
z_flag_ = z_flag_FPSCR_;
c_flag_ = c_flag_FPSCR_;
v_flag_ = v_flag_FPSCR_;
}
// Addressing Mode 1 - Data-processing operands:
// Get the value based on the shifter_operand with register.
int32_t Simulator::getShiftRm(SimInstruction* instr, bool* carry_out) {
ShiftType shift = instr->shifttypeValue();
int shift_amount = instr->shiftAmountValue();
int32_t result = get_register(instr->rmValue());
if (instr->bit(4) == 0) {
// By immediate.
if (shift == ROR && shift_amount == 0) {
MOZ_CRASH("NYI");
return result;
}
if ((shift == LSR || shift == ASR) && shift_amount == 0) {
shift_amount = 32;
}
switch (shift) {
case ASR: {
if (shift_amount == 0) {
if (result < 0) {
result = 0xffffffff;
*carry_out = true;
} else {
result = 0;
*carry_out = false;
}
} else {
result >>= (shift_amount - 1);
*carry_out = (result & 1) == 1;
result >>= 1;
}
break;
}
case LSL: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else {
result <<= (shift_amount - 1);
*carry_out = (result < 0);
result <<= 1;
}
break;
}
case LSR: {
if (shift_amount == 0) {
result = 0;
*carry_out = c_flag_;
} else {
uint32_t uresult = static_cast<uint32_t>(result);
uresult >>= (shift_amount - 1);
*carry_out = (uresult & 1) == 1;
uresult >>= 1;
result = static_cast<int32_t>(uresult);
}
break;
}
case ROR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else {
uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
result = right | left;
*carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
}
break;
}
default:
MOZ_CRASH();
}
} else {
// By register.
int rs = instr->rsValue();
shift_amount = get_register(rs) & 0xff;
switch (shift) {
case ASR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
result >>= (shift_amount - 1);
*carry_out = (result & 1) == 1;
result >>= 1;
} else {
MOZ_ASSERT(shift_amount >= 32);
if (result < 0) {
*carry_out = true;
result = 0xffffffff;
} else {
*carry_out = false;
result = 0;
}
}
break;
}
case LSL: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
result <<= (shift_amount - 1);
*carry_out = (result < 0);
result <<= 1;
} else if (shift_amount == 32) {
*carry_out = (result & 1) == 1;
result = 0;
} else {
MOZ_ASSERT(shift_amount > 32);
*carry_out = false;
result = 0;
}
break;
}
case LSR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
uint32_t uresult = static_cast<uint32_t>(result);
uresult >>= (shift_amount - 1);
*carry_out = (uresult & 1) == 1;
uresult >>= 1;
result = static_cast<int32_t>(uresult);
} else if (shift_amount == 32) {
*carry_out = (result < 0);
result = 0;
} else {
*carry_out = false;
result = 0;
}
break;
}
case ROR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else {
uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
result = right | left;
*carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
}
break;
}
default:
MOZ_CRASH();
}
}
return result;
}
// Addressing Mode 1 - Data-processing operands:
// Get the value based on the shifter_operand with immediate.
int32_t Simulator::getImm(SimInstruction* instr, bool* carry_out) {
int rotate = instr->rotateValue() * 2;
int immed8 = instr->immed8Value();
int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
*carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
return imm;
}
int32_t Simulator::processPU(SimInstruction* instr, int num_regs, int reg_size,
intptr_t* start_address, intptr_t* end_address) {
int rn = instr->rnValue();
int32_t rn_val = get_register(rn);
switch (instr->PUField()) {
case da_x:
MOZ_CRASH();
break;
case ia_x:
*start_address = rn_val;
*end_address = rn_val + (num_regs * reg_size) - reg_size;
rn_val = rn_val + (num_regs * reg_size);
break;
case db_x:
*start_address = rn_val - (num_regs * reg_size);
*end_address = rn_val - reg_size;
rn_val = *start_address;
break;
case ib_x:
*start_address = rn_val + reg_size;
*end_address = rn_val + (num_regs * reg_size);
rn_val = *end_address;
break;
default:
MOZ_CRASH();
}
return rn_val;
}
// Addressing Mode 4 - Load and Store Multiple
void Simulator::handleRList(SimInstruction* instr, bool load) {
int rlist = instr->rlistValue();
int num_regs = mozilla::CountPopulation32(rlist);
intptr_t start_address = 0;
intptr_t end_address = 0;
int32_t rn_val =
processPU(instr, num_regs, sizeof(void*), &start_address, &end_address);
intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
// Catch null pointers a little earlier.
MOZ_ASSERT(start_address > 8191 || start_address < 0);
int reg = 0;
while (rlist != 0) {
if ((rlist & 1) != 0) {
if (load) {
set_register(reg, *address);
} else {
*address = get_register(reg);
}
address += 1;
}
reg++;
rlist >>= 1;
}
MOZ_ASSERT(end_address == ((intptr_t)address) - 4);
if (instr->hasW()) {
set_register(instr->rnValue(), rn_val);
}
}
// Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
void Simulator::handleVList(SimInstruction* instr) {
VFPRegPrecision precision =
(instr->szValue() == 0) ? kSinglePrecision : kDoublePrecision;
int operand_size = (precision == kSinglePrecision) ? 4 : 8;
bool load = (instr->VLValue() == 0x1);
int vd;
int num_regs;
vd = instr->VFPDRegValue(precision);
if (precision == kSinglePrecision) {
num_regs = instr->immed8Value();
} else {
num_regs = instr->immed8Value() / 2;
}
intptr_t start_address = 0;
intptr_t end_address = 0;
int32_t rn_val =
processPU(instr, num_regs, operand_size, &start_address, &end_address);
intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
for (int reg = vd; reg < vd + num_regs; reg++) {
if (precision == kSinglePrecision) {
if (load) {
set_s_register_from_sinteger(
reg, readW(reinterpret_cast<int32_t>(address), instr));
} else {
writeW(reinterpret_cast<int32_t>(address),
get_sinteger_from_s_register(reg), instr);
}
address += 1;
} else {
if (load) {
int32_t data[] = {readW(reinterpret_cast<int32_t>(address), instr),
readW(reinterpret_cast<int32_t>(address + 1), instr)};
double d;
memcpy(&d, data, 8);
set_d_register_from_double(reg, d);
} else {
int32_t data[2];
double d;
get_double_from_d_register(reg, &d);
memcpy(data, &d, 8);
writeW(reinterpret_cast<int32_t>(address), data[0], instr);
writeW(reinterpret_cast<int32_t>(address + 1), data[1], instr);
}
address += 2;
}
}
MOZ_ASSERT(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
if (instr->hasW()) {
set_register(instr->rnValue(), rn_val);
}
}
ABI_FUNCTION_TYPE_SIM_PROTOTYPES
// Fill the volatile registers with scratch values.
//
// Some of the ABI calls assume that the float registers are not scratched,
// even though the ABI defines them as volatile - a performance
// optimization. These are all calls passing operands in integer registers,
// so for now the simulator does not scratch any float registers for these
// calls. Should try to narrow it further in future.
//
void Simulator::scratchVolatileRegisters(void* target) {
// The ARM backend makes calls to __aeabi_idivmod and
// __aeabi_uidivmod assuming that the float registers are
// non-volatile as a performance optimization, so the float
// registers must not be scratch when calling these.
bool scratchFloat = target != __aeabi_idivmod && target != __aeabi_uidivmod;
int32_t scratch_value = 0xa5a5a5a5 ^ uint32_t(icount_);
set_register(r0, scratch_value);
set_register(r1, scratch_value);
set_register(r2, scratch_value);
set_register(r3, scratch_value);
set_register(r12, scratch_value); // Intra-Procedure-call scratch register.
set_register(r14, scratch_value); // Link register.
if (scratchFloat) {
uint64_t scratch_value_d =
0x5a5a5a5a5a5a5a5aLU ^ uint64_t(icount_) ^ (uint64_t(icount_) << 30);
for (uint32_t i = d0; i < d8; i++) {
set_d_register(i, &scratch_value_d);
}
for (uint32_t i = d16; i < FloatRegisters::TotalPhys; i++) {
set_d_register(i, &scratch_value_d);
}
}
}
static int64_t MakeInt64(int32_t first, int32_t second) {
// Little-endian order.
return ((int64_t)second << 32) | (uint32_t)first;
}
// Software interrupt instructions are used by the simulator to call into C++.
void Simulator::softwareInterrupt(SimInstruction* instr) {
int svc = instr->svcValue();
switch (svc) {
case kCallRtRedirected: {
Redirection* redirection = Redirection::FromSwiInstruction(instr);
int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
int32_t a0 = get_register(r0);
int32_t a1 = get_register(r1);
int32_t a2 = get_register(r2);
int32_t a3 = get_register(r3);
float s0, s1, s2, s3, s4;
get_float_from_s_register(0, &s0);
get_float_from_s_register(0, &s1);
get_float_from_s_register(0, &s2);
get_float_from_s_register(0, &s3);
get_float_from_s_register(0, &s4);
double d0, d1, d2, d3, d4;
get_double_from_d_register(0, &d0);
get_double_from_d_register(1, &d1);
get_double_from_d_register(2, &d2);
get_double_from_d_register(3, &d3);
get_double_from_d_register(4, &d4);
int32_t saved_lr = get_register(lr);
intptr_t external =
reinterpret_cast<intptr_t>(redirection->nativeFunction());
bool stack_aligned = (get_register(sp) & (ABIStackAlignment - 1)) == 0;
if (!stack_aligned) {
fprintf(stderr, "Runtime call with unaligned stack!\n");
MOZ_CRASH();
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
switch (redirection->type()) {
ABI_FUNCTION_TYPE_ARM32_SIM_DISPATCH
default:
MOZ_CRASH("call");
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
set_register(lr, saved_lr);
set_pc(get_register(lr));
break;
}
case kBreakpoint: {
ArmDebugger dbg(this);
dbg.debug();
break;
}
default: { // Stop uses all codes greater than 1 << 23.
if (svc >= (1 << 23)) {
uint32_t code = svc & kStopCodeMask;
if (isWatchedStop(code)) {
increaseStopCounter(code);
}
// Stop if it is enabled, otherwise go on jumping over the stop and
// the message address.
if (isEnabledStop(code)) {
ArmDebugger dbg(this);
dbg.stop(instr);
} else {
set_pc(get_pc() + 2 * SimInstruction::kInstrSize);
}
} else {
// This is not a valid svc code.
MOZ_CRASH();
break;
}
}
}
}
void Simulator::canonicalizeNaN(double* value) {
if (!wasm::CodeExists && !wasm::LookupCodeSegment(get_pc_as<void*>()) &&
FPSCR_default_NaN_mode_) {
*value = JS::CanonicalizeNaN(*value);
}
}
void Simulator::canonicalizeNaN(float* value) {
if (!wasm::CodeExists && !wasm::LookupCodeSegment(get_pc_as<void*>()) &&
FPSCR_default_NaN_mode_) {
*value = JS::CanonicalizeNaN(*value);
}
}
// Stop helper functions.
bool Simulator::isStopInstruction(SimInstruction* instr) {
return (instr->bits(27, 24) == 0xF) && (instr->svcValue() >= kStopCode);
}
bool Simulator::isWatchedStop(uint32_t code) {
MOZ_ASSERT(code <= kMaxStopCode);
return code < kNumOfWatchedStops;
}
bool Simulator::isEnabledStop(uint32_t code) {
MOZ_ASSERT(code <= kMaxStopCode);
// Unwatched stops are always enabled.
return !isWatchedStop(code) ||
!(watched_stops_[code].count & kStopDisabledBit);
}
void Simulator::enableStop(uint32_t code) {
MOZ_ASSERT(isWatchedStop(code));
if (!isEnabledStop(code)) {
watched_stops_[code].count &= ~kStopDisabledBit;
}
}
void Simulator::disableStop(uint32_t code) {
MOZ_ASSERT(isWatchedStop(code));
if (isEnabledStop(code)) {
watched_stops_[code].count |= kStopDisabledBit;
}
}
void Simulator::increaseStopCounter(uint32_t code) {
MOZ_ASSERT(code <= kMaxStopCode);
MOZ_ASSERT(isWatchedStop(code));
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
printf(
"Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n",
code);
watched_stops_[code].count = 0;
enableStop(code);
} else {
watched_stops_[code].count++;
}
}
// Print a stop status.
void Simulator::printStopInfo(uint32_t code) {
MOZ_ASSERT(code <= kMaxStopCode);
if (!isWatchedStop(code)) {
printf("Stop not watched.");
} else {
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops_[code].desc) {
printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
state, count, watched_stops_[code].desc);
} else {
printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
count);
}
}
}
}
// Instruction types 0 and 1 are both rolled into one function because they only
// differ in the handling of the shifter_operand.
void Simulator::decodeType01(SimInstruction* instr) {
int type = instr->typeValue();
if (type == 0 && instr->isSpecialType0()) {
// Multiply instruction or extra loads and stores.
if (instr->bits(7, 4) == 9) {
if (instr->bit(24) == 0) {
// Raw field decoding here. Multiply instructions have their Rd
// in funny places.
int rn = instr->rnValue();
int rm = instr->rmValue();
int rs = instr->rsValue();
int32_t rs_val = get_register(rs);
int32_t rm_val = get_register(rm);
if (instr->bit(23) == 0) {
if (instr->bit(21) == 0) {
// The MUL instruction description (A 4.1.33) refers to
// Rd as being the destination for the operation, but it
// confusingly uses the Rn field to encode it.
int rd = rn; // Remap the rn field to the Rd register.
int32_t alu_out = rm_val * rs_val;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
}
} else {
int rd = instr->rdValue();
int32_t acc_value = get_register(rd);
if (instr->bit(22) == 0) {
// The MLA instruction description (A 4.1.28) refers
// to the order of registers as "Rd, Rm, Rs,
// Rn". But confusingly it uses the Rn field to
// encode the Rd register and the Rd field to encode
// the Rn register.
int32_t mul_out = rm_val * rs_val;
int32_t result = acc_value + mul_out;
set_register(rn, result);
} else {
int32_t mul_out = rm_val * rs_val;
int32_t result = acc_value - mul_out;
set_register(rn, result);
}
}
} else {
// The signed/long multiply instructions use the terms RdHi
// and RdLo when referring to the target registers. They are
// mapped to the Rn and Rd fields as follows:
// RdLo == Rd
// RdHi == Rn (This is confusingly stored in variable rd here
// because the mul instruction from above uses the
// Rn field to encode the Rd register. Good luck figuring
// this out without reading the ARM instruction manual
// at a very detailed level.)
int rd_hi = rn; // Remap the rn field to the RdHi register.
int rd_lo = instr->rdValue();
int32_t hi_res = 0;
int32_t lo_res = 0;
if (instr->bit(22) == 1) {
int64_t left_op = static_cast<int32_t>(rm_val);
int64_t right_op = static_cast<int32_t>(rs_val);
uint64_t result = left_op * right_op;
hi_res = static_cast<int32_t>(result >> 32);
lo_res = static_cast<int32_t>(result & 0xffffffff);
} else {
// Unsigned multiply.
uint64_t left_op = static_cast<uint32_t>(rm_val);
uint64_t right_op = static_cast<uint32_t>(rs_val);
uint64_t result = left_op * right_op;
hi_res = static_cast<int32_t>(result >> 32);
lo_res = static_cast<int32_t>(result & 0xffffffff);
}
set_register(rd_lo, lo_res);
set_register(rd_hi, hi_res);
if (instr->hasS()) {
MOZ_CRASH();
}
}
} else {
if (instr->bits(excl::ExclusiveOpHi, excl::ExclusiveOpLo) ==
excl::ExclusiveOpcode) {
// Load-exclusive / store-exclusive.
if (instr->bit(excl::ExclusiveLoad)) {
int rn = instr->rnValue();
int rt = instr->rtValue();
int32_t address = get_register(rn);
switch (instr->bits(excl::ExclusiveSizeHi, excl::ExclusiveSizeLo)) {
case excl::ExclusiveWord:
set_register(rt, readExW(address, instr));
break;
case excl::ExclusiveDouble: {
MOZ_ASSERT((rt % 2) == 0);
int32_t hibits;
int32_t lobits = readExDW(address, &hibits);
set_register(rt, lobits);
set_register(rt + 1, hibits);
break;
}
case excl::ExclusiveByte:
set_register(rt, readExBU(address));
break;
case excl::ExclusiveHalf:
set_register(rt, readExHU(address, instr));
break;
}
} else {
int rn = instr->rnValue();
int rd = instr->rdValue();
int rt = instr->bits(3, 0);
int32_t address = get_register(rn);
int32_t value = get_register(rt);
int32_t result = 0;
switch (instr->bits(excl::ExclusiveSizeHi, excl::ExclusiveSizeLo)) {
case excl::ExclusiveWord:
result = writeExW(address, value, instr);
break;
case excl::ExclusiveDouble: {
MOZ_ASSERT((rt % 2) == 0);
int32_t value2 = get_register(rt + 1);
result = writeExDW(address, value, value2);
break;
}
case excl::ExclusiveByte:
result = writeExB(address, (uint8_t)value);
break;
case excl::ExclusiveHalf:
result = writeExH(address, (uint16_t)value, instr);
break;
}
set_register(rd, result);
}
} else {
MOZ_CRASH(); // Not used atm
}
}
} else {
// Extra load/store instructions.
int rd = instr->rdValue();
int rn = instr->rnValue();
int32_t rn_val = get_register(rn);
int32_t addr = 0;
if (instr->bit(22) == 0) {
int rm = instr->rmValue();
int32_t rm_val = get_register(rm);
switch (instr->PUField()) {
case da_x:
MOZ_ASSERT(!instr->hasW());
addr = rn_val;
rn_val -= rm_val;
set_register(rn, rn_val);
break;
case ia_x:
MOZ_ASSERT(!instr->hasW());
addr = rn_val;
rn_val += rm_val;
set_register(rn, rn_val);
break;
case db_x:
rn_val -= rm_val;
addr = rn_val;
if (instr->hasW()) {
set_register(rn, rn_val);
}
break;
case ib_x:
rn_val += rm_val;
addr = rn_val;
if (instr->hasW()) {
set_register(rn, rn_val);
}
break;
default:
// The PU field is a 2-bit field.
MOZ_CRASH();
break;
}
} else {
int32_t imm_val = (instr->immedHValue() << 4) | instr->immedLValue();
switch (instr->PUField()) {
case da_x:
MOZ_ASSERT(!instr->hasW());
addr = rn_val;
rn_val -= imm_val;
set_register(rn, rn_val);
break;
case ia_x:
MOZ_ASSERT(!instr->hasW());
addr = rn_val;
rn_val += imm_val;
set_register(rn, rn_val);
break;
case db_x:
rn_val -= imm_val;
addr = rn_val;
if (instr->hasW()) {
set_register(rn, rn_val);
}
break;
case ib_x:
rn_val += imm_val;
addr = rn_val;
if (instr->hasW()) {
set_register(rn, rn_val);
}
break;
default:
// The PU field is a 2-bit field.
MOZ_CRASH();
break;
}
}
if ((instr->bits(7, 4) & 0xd) == 0xd && instr->bit(20) == 0) {
MOZ_ASSERT((rd % 2) == 0);
if (instr->hasH()) {
// The strd instruction.
int32_t value1 = get_register(rd);
int32_t value2 = get_register(rd + 1);
writeDW(addr, value1, value2);
} else {
// The ldrd instruction.
int* rn_data = readDW(addr);
if (rn_data) {
set_dw_register(rd, rn_data);
}
}
} else if (instr->hasH()) {
if (instr->hasSign()) {
if (instr->hasL()) {
int16_t val = readH(addr, instr);
set_register(rd, val);
} else {
int16_t val = get_register(rd);
writeH(addr, val, instr);
}
} else {
if (instr->hasL()) {
uint16_t val = readHU(addr, instr);
set_register(rd, val);
} else {
uint16_t val = get_register(rd);
writeH(addr, val, instr);
}
}
} else {
// Signed byte loads.
MOZ_ASSERT(instr->hasSign());
MOZ_ASSERT(instr->hasL());
int8_t val = readB(addr);
set_register(rd, val);
}
return;
}
} else if ((type == 0) && instr->isMiscType0()) {
if (instr->bits(7, 4) == 0) {
if (instr->bit(21) == 0) {
// mrs
int rd = instr->rdValue();
uint32_t flags;
if (instr->bit(22) == 0) {
// CPSR. Note: The Q flag is not yet implemented!
flags = (n_flag_ << 31) | (z_flag_ << 30) | (c_flag_ << 29) |
(v_flag_ << 28);
} else {
// SPSR
MOZ_CRASH();
}
set_register(rd, flags);
} else {
// msr
if (instr->bits(27, 23) == 2) {
// Register operand. For now we only emit mask 0b1100.
int rm = instr->rmValue();
mozilla::DebugOnly<uint32_t> mask = instr->bits(19, 16);
MOZ_ASSERT(mask == (3 << 2));
uint32_t flags = get_register(rm);
n_flag_ = (flags >> 31) & 1;
z_flag_ = (flags >> 30) & 1;
c_flag_ = (flags >> 29) & 1;
v_flag_ = (flags >> 28) & 1;
} else {
MOZ_CRASH();
}
}
} else if (instr->bits(22, 21) == 1) {
int rm = instr->rmValue();
switch (instr->bits(7, 4)) {
case 1: // BX
set_pc(get_register(rm));
break;
case 3: { // BLX
uint32_t old_pc = get_pc();
set_pc(get_register(rm));
set_register(lr, old_pc + SimInstruction::kInstrSize);
break;
}
case 7: { // BKPT
fprintf(stderr, "Simulator hit BKPT.\n");
if (getenv("ARM_SIM_DEBUGGER")) {
ArmDebugger dbg(this);
dbg.debug();
} else {
fprintf(stderr,
"Use ARM_SIM_DEBUGGER=1 to enter the builtin debugger.\n");
MOZ_CRASH("ARM simulator breakpoint");
}
break;
}
default:
MOZ_CRASH();
}
} else if (instr->bits(22, 21) == 3) {
int rm = instr->rmValue();
int rd = instr->rdValue();
switch (instr->bits(7, 4)) {
case 1: { // CLZ
uint32_t bits = get_register(rm);
int leading_zeros = 0;
if (bits == 0) {
leading_zeros = 32;
} else {
leading_zeros = mozilla::CountLeadingZeroes32(bits);
}
set_register(rd, leading_zeros);
break;
}
default:
MOZ_CRASH();
break;
}
} else {
printf("%08x\n", instr->instructionBits());
MOZ_CRASH();
}
} else if ((type == 1) && instr->isNopType1()) {
// NOP.
} else if ((type == 1) && instr->isCsdbType1()) {
// Speculation barrier. (No-op for the simulator)
} else {
int rd = instr->rdValue();
int rn = instr->rnValue();
int32_t rn_val = get_register(rn);
int32_t shifter_operand = 0;
bool shifter_carry_out = 0;
if (type == 0) {
shifter_operand = getShiftRm(instr, &shifter_carry_out);
} else {
MOZ_ASSERT(instr->typeValue() == 1);
shifter_operand = getImm(instr, &shifter_carry_out);
}
int32_t alu_out;
switch (instr->opcodeField()) {
case OpAnd:
alu_out = rn_val & shifter_operand;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(shifter_carry_out);
}
break;
case OpEor:
alu_out = rn_val ^ shifter_operand;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(shifter_carry_out);
}
break;
case OpSub:
alu_out = rn_val - shifter_operand;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(!borrowFrom(rn_val, shifter_operand));
setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, false));
}
break;
case OpRsb:
alu_out = shifter_operand - rn_val;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(!borrowFrom(shifter_operand, rn_val));
setVFlag(overflowFrom(alu_out, shifter_operand, rn_val, false));
}
break;
case OpAdd:
alu_out = rn_val + shifter_operand;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(carryFrom(rn_val, shifter_operand));
setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true));
}
break;
case OpAdc:
alu_out = rn_val + shifter_operand + getCarry();
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(carryFrom(rn_val, shifter_operand, getCarry()));
setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true));
}
break;
case OpSbc:
alu_out = rn_val - shifter_operand - (getCarry() == 0 ? 1 : 0);
set_register(rd, alu_out);
if (instr->hasS()) {
MOZ_CRASH();
}
break;
case OpRsc:
alu_out = shifter_operand - rn_val - (getCarry() == 0 ? 1 : 0);
set_register(rd, alu_out);
if (instr->hasS()) {
MOZ_CRASH();
}
break;
case OpTst:
if (instr->hasS()) {
alu_out = rn_val & shifter_operand;
setNZFlags(alu_out);
setCFlag(shifter_carry_out);
} else {
alu_out = instr->immedMovwMovtValue();
set_register(rd, alu_out);
}
break;
case OpTeq:
if (instr->hasS()) {
alu_out = rn_val ^ shifter_operand;
setNZFlags(alu_out);
setCFlag(shifter_carry_out);
} else {
// Other instructions matching this pattern are handled in the
// miscellaneous instructions part above.
MOZ_CRASH();
}
break;
case OpCmp:
if (instr->hasS()) {
alu_out = rn_val - shifter_operand;
setNZFlags(alu_out);
setCFlag(!borrowFrom(rn_val, shifter_operand));
setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, false));
} else {
alu_out =
(get_register(rd) & 0xffff) | (instr->immedMovwMovtValue() << 16);
set_register(rd, alu_out);
}
break;
case OpCmn:
if (instr->hasS()) {
alu_out = rn_val + shifter_operand;
setNZFlags(alu_out);
setCFlag(carryFrom(rn_val, shifter_operand));
setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true));
} else {
// Other instructions matching this pattern are handled in the
// miscellaneous instructions part above.
MOZ_CRASH();
}
break;
case OpOrr:
alu_out = rn_val | shifter_operand;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(shifter_carry_out);
}
break;
case OpMov:
alu_out = shifter_operand;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(shifter_carry_out);
}
break;
case OpBic:
alu_out = rn_val & ~shifter_operand;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(shifter_carry_out);
}
break;
case OpMvn:
alu_out = ~shifter_operand;
set_register(rd, alu_out);
if (instr->hasS()) {
setNZFlags(alu_out);
setCFlag(shifter_carry_out);
}
break;
default:
MOZ_CRASH();
break;
}
}
}
void Simulator::decodeType2(SimInstruction* instr) {
int rd = instr->rdValue();
int rn = instr->rnValue();
int32_t rn_val = get_register(rn);
int32_t im_val = instr->offset12Value();
int32_t addr = 0;
switch (instr->PUField()) {
case da_x:
MOZ_ASSERT(!instr->hasW());
addr = rn_val;
rn_val -= im_val;
set_register(rn, rn_val);
break;
case ia_x:
MOZ_ASSERT(!instr->hasW());
addr = rn_val;
rn_val += im_val;
set_register(rn, rn_val);
break;
case db_x:
rn_val -= im_val;
addr = rn_val;
if (instr->hasW()) {
set_register(rn, rn_val);
}
break;
case ib_x:
rn_val += im_val;
addr = rn_val;
if (instr->hasW()) {
set_register(rn, rn_val);
}
break;
default:
MOZ_CRASH();
break;
}
if (instr->hasB()) {
if (instr->hasL()) {
uint8_t val = readBU(addr);
set_register(rd, val);
} else {
uint8_t val = get_register(rd);
writeB(addr, val);
}
} else {
if (instr->hasL()) {
set_register(rd, readW(addr, instr, AllowUnaligned));
} else {
writeW(addr, get_register(rd), instr, AllowUnaligned);
}
}
}
static uint32_t rotateBytes(uint32_t val, int32_t rotate) {
switch (rotate) {
default:
return val;
case 1:
return (val >> 8) | (val << 24);
case 2:
return (val >> 16) | (val << 16);
case 3:
return (val >> 24) | (val << 8);
}
}
void Simulator::decodeType3(SimInstruction* instr) {
if (MOZ_UNLIKELY(instr->isUDF())) {
uint8_t* newPC;
if (wasm::HandleIllegalInstruction(registerState(), &newPC)) {
set_pc((int32_t)newPC);
return;
}
MOZ_CRASH("illegal instruction encountered");
}
int rd = instr->rdValue();
int rn = instr->rnValue();
int32_t rn_val = get_register(rn);
bool shifter_carry_out = 0;
int32_t shifter_operand = getShiftRm(instr, &shifter_carry_out);
int32_t addr = 0;
switch (instr->PUField()) {
case da_x:
MOZ_ASSERT(!instr->hasW());
MOZ_CRASH();
break;
case ia_x: {
if (instr->bit(4) == 0) {
// Memop.
} else {
if (instr->bit(5) == 0) {
switch (instr->bits(22, 21)) {
case 0:
if (instr->bit(20) == 0) {
if (instr->bit(6) == 0) {
// Pkhbt.
uint32_t rn_val = get_register(rn);
uint32_t rm_val = get_register(instr->rmValue());
int32_t shift = instr->bits(11, 7);
rm_val <<= shift;
set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U));
} else {
// Pkhtb.
uint32_t rn_val = get_register(rn);
int32_t rm_val = get_register(instr->rmValue());
int32_t shift = instr->bits(11, 7);
if (shift == 0) {
shift = 32;
}
rm_val >>= shift;
set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF));
}
} else {
MOZ_CRASH();
}
break;
case 1:
MOZ_CRASH();
break;
case 2:
MOZ_CRASH();
break;
case 3: {
// Usat.
int32_t sat_pos = instr->bits(20, 16);
int32_t sat_val = (1 << sat_pos) - 1;
int32_t shift = instr->bits(11, 7);
int32_t shift_type = instr->bit(6);
int32_t rm_val = get_register(instr->rmValue());
if (shift_type == 0) { // LSL
rm_val <<= shift;
} else { // ASR
rm_val >>= shift;
}
// If saturation occurs, the Q flag should be set in the
// CPSR. There is no Q flag yet, and no instruction (MRS)
// to read the CPSR directly.
if (rm_val > sat_val) {
rm_val = sat_val;
} else if (rm_val < 0) {
rm_val = 0;
}
set_register(rd, rm_val);
break;
}
}
} else {
switch (instr->bits(22, 21)) {
case 0:
MOZ_CRASH();
break;
case 1:
if (instr->bits(7, 4) == 7 && instr->bits(19, 16) == 15) {
uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
instr->bits(11, 10));
if (instr->bit(20)) {
// Sxth.
set_register(rd, (int32_t)(int16_t)(rm_val & 0xFFFF));
} else {
// Sxtb.
set_register(rd, (int32_t)(int8_t)(rm_val & 0xFF));
}
} else if (instr->bits(20, 16) == 0b1'1111 &&
instr->bits(11, 4) == 0b1111'0011) {
// Rev
uint32_t rm_val = get_register(instr->rmValue());
static_assert(MOZ_LITTLE_ENDIAN());
set_register(rd,
mozilla::NativeEndian::swapToBigEndian(rm_val));
} else if (instr->bits(20, 16) == 0b1'1111 &&
instr->bits(11, 4) == 0b1111'1011) {
// Rev16
uint32_t rm_val = get_register(instr->rmValue());
static_assert(MOZ_LITTLE_ENDIAN());
uint32_t hi = mozilla::NativeEndian::swapToBigEndian(
uint16_t(rm_val >> 16));
uint32_t lo =
mozilla::NativeEndian::swapToBigEndian(uint16_t(rm_val));
set_register(rd, (hi << 16) | lo);
} else {
MOZ_CRASH();
}
break;
case 2:
if ((instr->bit(20) == 0) && (instr->bits(9, 6) == 1)) {
if (instr->bits(19, 16) == 0xF) {
// Uxtb16.
uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
instr->bits(11, 10));
set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000));
} else {
MOZ_CRASH();
}
} else {
MOZ_CRASH();
}
break;
case 3:
if ((instr->bit(20) == 0) && (instr->bits(9, 6) == 1)) {
if (instr->bits(19, 16) == 0xF) {
// Uxtb.
uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
instr->bits(11, 10));
set_register(rd, (rm_val & 0xFF));
} else {
// Uxtab.
uint32_t rn_val = get_register(rn);
uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
instr->bits(11, 10));
set_register(rd, rn_val + (rm_val & 0xFF));
}
} else if ((instr->bit(20) == 1) && (instr->bits(9, 6) == 1)) {
if (instr->bits(19, 16) == 0xF) {
// Uxth.
uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
instr->bits(11, 10));
set_register(rd, (rm_val & 0xFFFF));
} else {
// Uxtah.
uint32_t rn_val = get_register(rn);
uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
instr->bits(11, 10));
set_register(rd, rn_val + (rm_val & 0xFFFF));
}
} else if (instr->bits(20, 16) == 0b1'1111 &&
instr->bits(11, 4) == 0b1111'1011) {
// Revsh
uint32_t rm_val = get_register(instr->rmValue());
static_assert(MOZ_LITTLE_ENDIAN());
set_register(
rd, int32_t(int16_t(mozilla::NativeEndian::swapToBigEndian(
uint16_t(rm_val)))));
} else {
MOZ_CRASH();
}
break;
}
}
return;
}
break;
}
case db_x: { // sudiv
if (instr->bit(22) == 0x0 && instr->bit(20) == 0x1 &&
instr->bits(15, 12) == 0x0f && instr->bits(7, 4) == 0x1) {
if (!instr->hasW()) {
// sdiv (in V8 notation matching ARM ISA format) rn = rm/rs.
int rm = instr->rmValue();
int32_t rm_val = get_register(rm);
int rs = instr->rsValue();
int32_t rs_val = get_register(rs);
int32_t ret_val = 0;
MOZ_ASSERT(rs_val != 0);
if ((rm_val == INT32_MIN) && (rs_val == -1)) {
ret_val = INT32_MIN;
} else {
ret_val = rm_val / rs_val;
}
set_register(rn, ret_val);
return;
} else {
// udiv (in V8 notation matching ARM ISA format) rn = rm/rs.
int rm = instr->rmValue();
uint32_t rm_val = get_register(rm);
int rs = instr->rsValue();
uint32_t rs_val = get_register(rs);
uint32_t ret_val = 0;
MOZ_ASSERT(rs_val != 0);
ret_val = rm_val / rs_val;
set_register(rn, ret_val);
return;
}
}
addr = rn_val - shifter_operand;
if (instr->hasW()) {
set_register(rn, addr);
}
break;
}
case ib_x: {
if (instr->hasW() && (instr->bits(6, 4) == 0x5)) {
uint32_t widthminus1 = static_cast<uint32_t>(instr->bits(20, 16));
uint32_t lsbit = static_cast<uint32_t>(instr->bits(11, 7));
uint32_t msbit = widthminus1 + lsbit;
if (msbit <= 31) {
if (instr->bit(22)) {
// ubfx - unsigned bitfield extract.
uint32_t rm_val =
static_cast<uint32_t>(get_register(instr->rmValue()));
uint32_t extr_val = rm_val << (31 - msbit);
extr_val = extr_val >> (31 - widthminus1);
set_register(instr->rdValue(), extr_val);
} else {
// sbfx - signed bitfield extract.
int32_t rm_val = get_register(instr->rmValue());
int32_t extr_val = rm_val << (31 - msbit);
extr_val = extr_val >> (31 - widthminus1);
set_register(instr->rdValue(), extr_val);
}
} else {
MOZ_CRASH();
}
return;
} else if (!instr->hasW() && (instr->bits(6, 4) == 0x1)) {
uint32_t lsbit = static_cast<uint32_t>(instr->bits(11, 7));
uint32_t msbit = static_cast<uint32_t>(instr->bits(20, 16));
if (msbit >= lsbit) {
// bfc or bfi - bitfield clear/insert.
uint32_t rd_val =
static_cast<uint32_t>(get_register(instr->rdValue()));
uint32_t bitcount = msbit - lsbit + 1;
uint32_t mask = (1 << bitcount) - 1;
rd_val &= ~(mask << lsbit);
if (instr->rmValue() != 15) {
// bfi - bitfield insert.
uint32_t rm_val =
static_cast<uint32_t>(get_register(instr->rmValue()));
rm_val &= mask;
rd_val |= rm_val << lsbit;
}
set_register(instr->rdValue(), rd_val);
} else {
MOZ_CRASH();
}
return;
} else {
addr = rn_val + shifter_operand;
if (instr->hasW()) {
set_register(rn, addr);
}
}
break;
}
default:
MOZ_CRASH();
break;
}
if (instr->hasB()) {
if (instr->hasL()) {
uint8_t byte = readB(addr);
set_register(rd, byte);
} else {
uint8_t byte = get_register(rd);
writeB(addr, byte);
}
} else {
if (instr->hasL()) {
set_register(rd, readW(addr, instr, AllowUnaligned));
} else {
writeW(addr, get_register(rd), instr, AllowUnaligned);
}
}
}
void Simulator::decodeType4(SimInstruction* instr) {
// Only allowed to be set in privileged mode.
MOZ_ASSERT(instr->bit(22) == 0);
bool load = instr->hasL();
handleRList(instr, load);
}
void Simulator::decodeType5(SimInstruction* instr) {
int off = instr->sImmed24Value() << 2;
intptr_t pc_address = get_pc();
if (instr->hasLink()) {
set_register(lr, pc_address + SimInstruction::kInstrSize);
}
int pc_reg = get_register(pc);
set_pc(pc_reg + off);
}
void Simulator::decodeType6(SimInstruction* instr) {
decodeType6CoprocessorIns(instr);
}
void Simulator::decodeType7(SimInstruction* instr) {
if (instr->bit(24) == 1) {
softwareInterrupt(instr);
} else if (instr->bit(4) == 1 && instr->bits(11, 9) != 5) {
decodeType7CoprocessorIns(instr);
} else {
decodeTypeVFP(instr);
}
}
void Simulator::decodeType7CoprocessorIns(SimInstruction* instr) {
if (instr->bit(20) == 0) {
// MCR, MCR2
if (instr->coprocessorValue() == 15) {
int opc1 = instr->bits(23, 21);
int opc2 = instr->bits(7, 5);
int CRn = instr->bits(19, 16);
int CRm = instr->bits(3, 0);
if (opc1 == 0 && opc2 == 4 && CRn == 7 && CRm == 10) {
// ARMv6 DSB instruction. We do not use DSB.
MOZ_CRASH("DSB not implemented");
} else if (opc1 == 0 && opc2 == 5 && CRn == 7 && CRm == 10) {
// ARMv6 DMB instruction.
AtomicOperations::fenceSeqCst();
} else if (opc1 == 0 && opc2 == 4 && CRn == 7 && CRm == 5) {
// ARMv6 ISB instruction. We do not use ISB.
MOZ_CRASH("ISB not implemented");
} else {
MOZ_CRASH();
}
} else {
MOZ_CRASH();
}
} else {
// MRC, MRC2
MOZ_CRASH();
}
}
void Simulator::decodeTypeVFP(SimInstruction* instr) {
MOZ_ASSERT(instr->typeValue() == 7 && instr->bit(24) == 0);
MOZ_ASSERT(instr->bits(11, 9) == 0x5);
// Obtain double precision register codes.
VFPRegPrecision precision =
(instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision;
int vm = instr->VFPMRegValue(precision);
int vd = instr->VFPDRegValue(precision);
int vn = instr->VFPNRegValue(precision);
if (instr->bit(4) == 0) {
if (instr->opc1Value() == 0x7) {
// Other data processing instructions.
if ((instr->opc2Value() == 0x0) && (instr->opc3Value() == 0x1)) {
// vmov register to register.
if (instr->szValue() == 0x1) {
int m = instr->VFPMRegValue(kDoublePrecision);
int d = instr->VFPDRegValue(kDoublePrecision);
double temp;
get_double_from_d_register(m, &temp);
set_d_register_from_double(d, temp);
} else {
int m = instr->VFPMRegValue(kSinglePrecision);
int d = instr->VFPDRegValue(kSinglePrecision);
float temp;
get_float_from_s_register(m, &temp);
set_s_register_from_float(d, temp);
}
} else if ((instr->opc2Value() == 0x0) && (instr->opc3Value() == 0x3)) {
// vabs
if (instr->szValue() == 0x1) {
union {
double f64;
uint64_t u64;
} u;
get_double_from_d_register(vm, &u.f64);
u.u64 &= 0x7fffffffffffffffu;
double dd_value = u.f64;
canonicalizeNaN(&dd_value);
set_d_register_from_double(vd, dd_value);
} else {
union {
float f32;
uint32_t u32;
} u;
get_float_from_s_register(vm, &u.f32);
u.u32 &= 0x7fffffffu;
float fd_value = u.f32;
canonicalizeNaN(&fd_value);
set_s_register_from_float(vd, fd_value);
}
} else if ((instr->opc2Value() == 0x1) && (instr->opc3Value() == 0x1)) {
// vneg
if (instr->szValue() == 0x1) {
double dm_value;
get_double_from_d_register(vm, &dm_value);
double dd_value = -dm_value;
canonicalizeNaN(&dd_value);
set_d_register_from_double(vd, dd_value);
} else {
float fm_value;
get_float_from_s_register(vm, &fm_value);
float fd_value = -fm_value;
canonicalizeNaN(&fd_value);
set_s_register_from_float(vd, fd_value);
}
} else if ((instr->opc2Value() == 0x7) && (instr->opc3Value() == 0x3)) {
decodeVCVTBetweenDoubleAndSingle(instr);
} else if ((instr->opc2Value() == 0x8) && (instr->opc3Value() & 0x1)) {
decodeVCVTBetweenFloatingPointAndInteger(instr);
} else if ((instr->opc2Value() == 0xA) && (instr->opc3Value() == 0x3) &&
(instr->bit(8) == 1)) {
// vcvt.f64.s32 Dd, Dd, #<fbits>.
int fraction_bits = 32 - ((instr->bits(3, 0) << 1) | instr->bit(5));
int fixed_value = get_sinteger_from_s_register(vd * 2);
double divide = 1 << fraction_bits;
set_d_register_from_double(vd, fixed_value / divide);
} else if (((instr->opc2Value() >> 1) == 0x6) &&
(instr->opc3Value() & 0x1)) {
decodeVCVTBetweenFloatingPointAndInteger(instr);
} else if (((instr->opc2Value() == 0x4) || (instr->opc2Value() == 0x5)) &&
(instr->opc3Value() & 0x1)) {
decodeVCMP(instr);
} else if (((instr->opc2Value() == 0x1)) && (instr->opc3Value() == 0x3)) {
// vsqrt
if (instr->szValue() == 0x1) {
double dm_value;
get_double_from_d_register(vm, &dm_value);
double dd_value = std::sqrt(dm_value);
canonicalizeNaN(&dd_value);
set_d_register_from_double(vd, dd_value);
} else {
float fm_value;
get_float_from_s_register(vm, &fm_value);
float fd_value = std::sqrt(fm_value);
canonicalizeNaN(&fd_value);
set_s_register_from_float(vd, fd_value);
}
} else if (instr->opc3Value() == 0x0) {
// vmov immediate.
if (instr->szValue() == 0x1) {
set_d_register_from_double(vd, instr->doubleImmedVmov());
} else {
// vmov.f32 immediate.
set_s_register_from_float(vd, instr->float32ImmedVmov());
}
} else {
decodeVCVTBetweenFloatingPointAndIntegerFrac(instr);
}
} else if (instr->opc1Value() == 0x3) {
if (instr->szValue() != 0x1) {
if (instr->opc3Value() & 0x1) {
// vsub
float fn_value;
get_float_from_s_register(vn, &fn_value);
float fm_value;
get_float_from_s_register(vm, &fm_value);
float fd_value = fn_value - fm_value;
canonicalizeNaN(&fd_value);
set_s_register_from_float(vd, fd_value);
} else {
// vadd
float fn_value;
get_float_from_s_register(vn, &fn_value);
float fm_value;
get_float_from_s_register(vm, &fm_value);
float fd_value = fn_value + fm_value;
canonicalizeNaN(&fd_value);
set_s_register_from_float(vd, fd_value);
}
} else {
if (instr->opc3Value() & 0x1) {
// vsub
double dn_value;
get_double_from_d_register(vn, &dn_value);
double dm_value;
get_double_from_d_register(vm, &dm_value);
double dd_value = dn_value - dm_value;
canonicalizeNaN(&dd_value);
set_d_register_from_double(vd, dd_value);
} else {
// vadd
double dn_value;
get_double_from_d_register(vn, &dn_value);
double dm_value;
get_double_from_d_register(vm, &dm_value);
double dd_value = dn_value + dm_value;
canonicalizeNaN(&dd_value);
set_d_register_from_double(vd, dd_value);
}
}
} else if ((instr->opc1Value() == 0x2) && !(instr->opc3Value() & 0x1)) {
// vmul
if (instr->szValue() != 0x1) {
float fn_value;
get_float_from_s_register(vn, &fn_value);
float fm_value;
get_float_from_s_register(vm, &fm_value);
float fd_value = fn_value * fm_value;
canonicalizeNaN(&fd_value);
set_s_register_from_float(vd, fd_value);
} else {
double dn_value;
get_double_from_d_register(vn, &dn_value);
double dm_value;
get_double_from_d_register(vm, &dm_value);
double dd_value = dn_value * dm_value;
canonicalizeNaN(&dd_value);
set_d_register_from_double(vd, dd_value);
}
} else if ((instr->opc1Value() == 0x0)) {
// vmla, vmls
const bool is_vmls = (instr->opc3Value() & 0x1);
if (instr->szValue() != 0x1) {
MOZ_CRASH("Not used by V8.");
}
double dd_val;
get_double_from_d_register(vd, &dd_val);
double dn_val;
get_double_from_d_register(vn, &dn_val);
double dm_val;
get_double_from_d_register(vm, &dm_val);
// Note: we do the mul and add/sub in separate steps to avoid
// getting a result with too high precision.
set_d_register_from_double(vd, dn_val * dm_val);
double temp;
get_double_from_d_register(vd, &temp);
if (is_vmls) {
temp = dd_val - temp;
} else {
temp = dd_val + temp;
}
canonicalizeNaN(&temp);
set_d_register_from_double(vd, temp);
} else if ((instr->opc1Value() == 0x4) && !(instr->opc3Value() & 0x1)) {
// vdiv
if (instr->szValue() != 0x1) {
float fn_value;
get_float_from_s_register(vn, &fn_value);
float fm_value;
get_float_from_s_register(vm, &fm_value);
float fd_value = fn_value / fm_value;
div_zero_vfp_flag_ = (fm_value == 0);
canonicalizeNaN(&fd_value);
set_s_register_from_float(vd, fd_value);
} else {
double dn_value;
get_double_from_d_register(vn, &dn_value);
double dm_value;
get_double_from_d_register(vm, &dm_value);
double dd_value = dn_value / dm_value;
div_zero_vfp_flag_ = (dm_value == 0);
canonicalizeNaN(&dd_value);
set_d_register_from_double(vd, dd_value);
}
} else {
MOZ_CRASH();
}
} else {
if (instr->VCValue() == 0x0 && instr->VAValue() == 0x0) {
decodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
} else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1) &&
(instr->bit(23) == 0x0)) {
// vmov (ARM core register to scalar).
int vd = instr->bits(19, 16) | (instr->bit(7) << 4);
double dd_value;
get_double_from_d_register(vd, &dd_value);
int32_t data[2];
memcpy(data, &dd_value, 8);
data[instr->bit(21)] = get_register(instr->rtValue());
memcpy(&dd_value, data, 8);
set_d_register_from_double(vd, dd_value);
} else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1) &&
(instr->bit(23) == 0x0)) {
// vmov (scalar to ARM core register).
int vn = instr->bits(19, 16) | (instr->bit(7) << 4);
double dn_value;
get_double_from_d_register(vn, &dn_value);
int32_t data[2];
memcpy(data, &dn_value, 8);
set_register(instr->rtValue(), data[instr->bit(21)]);
} else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x0) &&
(instr->VAValue() == 0x7) && (instr->bits(19, 16) == 0x1)) {
// vmrs
uint32_t rt = instr->rtValue();
if (rt == 0xF) {
copy_FPSCR_to_APSR();
} else {
// Emulate FPSCR from the Simulator flags.
uint32_t fpscr = (n_flag_FPSCR_ << 31) | (z_flag_FPSCR_ << 30) |
(c_flag_FPSCR_ << 29) | (v_flag_FPSCR_ << 28) |
(FPSCR_default_NaN_mode_ << 25) |
(inexact_vfp_flag_ << 4) | (underflow_vfp_flag_ << 3) |
(overflow_vfp_flag_ << 2) | (div_zero_vfp_flag_ << 1) |
(inv_op_vfp_flag_ << 0) | (FPSCR_rounding_mode_);
set_register(rt, fpscr);
}
} else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x0) &&
(instr->VAValue() == 0x7) && (instr->bits(19, 16) == 0x1)) {
// vmsr
uint32_t rt = instr->rtValue();
if (rt == pc) {
MOZ_CRASH();
} else {
uint32_t rt_value = get_register(rt);
n_flag_FPSCR_ = (rt_value >> 31) & 1;
z_flag_FPSCR_ = (rt_value >> 30) & 1;
c_flag_FPSCR_ = (rt_value >> 29) & 1;
v_flag_FPSCR_ = (rt_value >> 28) & 1;
FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1;
inexact_vfp_flag_ = (rt_value >> 4) & 1;
underflow_vfp_flag_ = (rt_value >> 3) & 1;
overflow_vfp_flag_ = (rt_value >> 2) & 1;
div_zero_vfp_flag_ = (rt_value >> 1) & 1;
inv_op_vfp_flag_ = (rt_value >> 0) & 1;
FPSCR_rounding_mode_ =
static_cast<VFPRoundingMode>((rt_value)&kVFPRoundingModeMask);
}
} else {
MOZ_CRASH();
}
}
}
void Simulator::decodeVMOVBetweenCoreAndSinglePrecisionRegisters(
SimInstruction* instr) {
MOZ_ASSERT(instr->bit(4) == 1 && instr->VCValue() == 0x0 &&
instr->VAValue() == 0x0);
int t = instr->rtValue();
int n = instr->VFPNRegValue(kSinglePrecision);
bool to_arm_register = (instr->VLValue() == 0x1);
if (to_arm_register) {
int32_t int_value = get_sinteger_from_s_register(n);
set_register(t, int_value);
} else {
int32_t rs_val = get_register(t);
set_s_register_from_sinteger(n, rs_val);
}
}
void Simulator::decodeVCMP(SimInstruction* instr) {
MOZ_ASSERT((instr->bit(4) == 0) && (instr->opc1Value() == 0x7));
MOZ_ASSERT(((instr->opc2Value() == 0x4) || (instr->opc2Value() == 0x5)) &&
(instr->opc3Value() & 0x1));
// Comparison.
VFPRegPrecision precision = kSinglePrecision;
if (instr->szValue() == 1) {
precision = kDoublePrecision;
}
int d = instr->VFPDRegValue(precision);
int m = 0;
if (instr->opc2Value() == 0x4) {
m = instr->VFPMRegValue(precision);
}
if (precision == kDoublePrecision) {
double dd_value;
get_double_from_d_register(d, &dd_value);
double dm_value = 0.0;
if (instr->opc2Value() == 0x4) {
get_double_from_d_register(m, &dm_value);
}
// Raise exceptions for quiet NaNs if necessary.
if (instr->bit(7) == 1) {
if (std::isnan(dd_value)) {
inv_op_vfp_flag_ = true;
}
}
compute_FPSCR_Flags(dd_value, dm_value);
} else {
float fd_value;
get_float_from_s_register(d, &fd_value);
float fm_value = 0.0;
if (instr->opc2Value() == 0x4) {
get_float_from_s_register(m, &fm_value);
}
// Raise exceptions for quiet NaNs if necessary.
if (instr->bit(7) == 1) {
if (std::isnan(fd_value)) {
inv_op_vfp_flag_ = true;
}
}
compute_FPSCR_Flags(fd_value, fm_value);
}
}
void Simulator::decodeVCVTBetweenDoubleAndSingle(SimInstruction* instr) {
MOZ_ASSERT(instr->bit(4) == 0 && instr->opc1Value() == 0x7);
MOZ_ASSERT(instr->opc2Value() == 0x7 && instr->opc3Value() == 0x3);
VFPRegPrecision dst_precision = kDoublePrecision;
VFPRegPrecision src_precision = kSinglePrecision;
if (instr->szValue() == 1) {
dst_precision = kSinglePrecision;
src_precision = kDoublePrecision;
}
int dst = instr->VFPDRegValue(dst_precision);
int src = instr->VFPMRegValue(src_precision);
if (dst_precision == kSinglePrecision) {
double val;
get_double_from_d_register(src, &val);
set_s_register_from_float(dst, static_cast<float>(val));
} else {
float val;
get_float_from_s_register(src, &val);
set_d_register_from_double(dst, static_cast<double>(val));
}
}
static bool get_inv_op_vfp_flag(VFPRoundingMode mode, double val,
bool unsigned_) {
MOZ_ASSERT(mode == SimRN || mode == SimRM || mode == SimRZ);
double max_uint = static_cast<double>(0xffffffffu);
double max_int = static_cast<double>(INT32_MAX);
double min_int = static_cast<double>(INT32_MIN);
// Check for NaN.
if (val != val) {
return true;
}
// Check for overflow. This code works because 32bit integers can be exactly
// represented by ieee-754 64bit floating-point values.
switch (mode) {
case SimRN:
return unsigned_ ? (val >= (max_uint + 0.5)) || (val < -0.5)
: (val >= (max_int + 0.5)) || (val < (min_int - 0.5));
case SimRM:
return unsigned_ ? (val >= (max_uint + 1.0)) || (val < 0)
: (val >= (max_int + 1.0)) || (val < min_int);
case SimRZ:
return unsigned_ ? (val >= (max_uint + 1.0)) || (val <= -1)
: (val >= (max_int + 1.0)) || (val <= (min_int - 1.0));
default:
MOZ_CRASH();
return true;
}
}
// We call this function only if we had a vfp invalid exception.
// It returns the correct saturated value.
static int VFPConversionSaturate(double val, bool unsigned_res) {
if (val != val) { // NaN.
return 0;
}
if (unsigned_res) {
return (val < 0) ? 0 : 0xffffffffu;
}
return (val < 0) ? INT32_MIN : INT32_MAX;
}
void Simulator::decodeVCVTBetweenFloatingPointAndInteger(
SimInstruction* instr) {
MOZ_ASSERT((instr->bit(4) == 0) && (instr->opc1Value() == 0x7) &&
(instr->bits(27, 23) == 0x1D));
MOZ_ASSERT(
((instr->opc2Value() == 0x8) && (instr->opc3Value() & 0x1)) ||
(((instr->opc2Value() >> 1) == 0x6) && (instr->opc3Value() & 0x1)));
// Conversion between floating-point and integer.
bool to_integer = (instr->bit(18) == 1);
VFPRegPrecision src_precision =
(instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision;
if (to_integer) {
// We are playing with code close to the C++ standard's limits below,
// hence the very simple code and heavy checks.
//
// Note: C++ defines default type casting from floating point to integer
// as (close to) rounding toward zero ("fractional part discarded").
int dst = instr->VFPDRegValue(kSinglePrecision);
int src = instr->VFPMRegValue(src_precision);
// Bit 7 in vcvt instructions indicates if we should use the FPSCR
// rounding mode or the default Round to Zero mode.
VFPRoundingMode mode = (instr->bit(7) != 1) ? FPSCR_rounding_mode_ : SimRZ;
MOZ_ASSERT(mode == SimRM || mode == SimRZ || mode == SimRN);
bool unsigned_integer = (instr->bit(16) == 0);
bool double_precision = (src_precision == kDoublePrecision);
double val;
if (double_precision) {
get_double_from_d_register(src, &val);
} else {
float fval;
get_float_from_s_register(src, &fval);
val = double(fval);
}
int temp = unsigned_integer ? static_cast<uint32_t>(val)
: static_cast<int32_t>(val);
inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);
double abs_diff = unsigned_integer
? std::fabs(val - static_cast<uint32_t>(temp))
: std::fabs(val - temp);
inexact_vfp_flag_ = (abs_diff != 0);
if (inv_op_vfp_flag_) {
temp = VFPConversionSaturate(val, unsigned_integer);
} else {
switch (mode) {
case SimRN: {
int val_sign = (val > 0) ? 1 : -1;
if (abs_diff > 0.5) {
temp += val_sign;
} else if (abs_diff == 0.5) {
// Round to even if exactly halfway.
temp = ((temp % 2) == 0) ? temp : temp + val_sign;
}
break;
}
case SimRM:
temp = temp > val ? temp - 1 : temp;
break;
case SimRZ:
// Nothing to do.
break;
default:
MOZ_CRASH();
}
}
// Update the destination register.
set_s_register_from_sinteger(dst, temp);
} else {
bool unsigned_integer = (instr->bit(7) == 0);
int dst = instr->VFPDRegValue(src_precision);
int src = instr->VFPMRegValue(kSinglePrecision);
int val = get_sinteger_from_s_register(src);
if (src_precision == kDoublePrecision) {
if (unsigned_integer) {
set_d_register_from_double(
dst, static_cast<double>(static_cast<uint32_t>(val)));
} else {
set_d_register_from_double(dst, static_cast<double>(val));
}
} else {
if (unsigned_integer) {
set_s_register_from_float(
dst, static_cast<float>(static_cast<uint32_t>(val)));
} else {
set_s_register_from_float(dst, static_cast<float>(val));
}
}
}
}
// A VFPv3 specific instruction.
void Simulator::decodeVCVTBetweenFloatingPointAndIntegerFrac(
SimInstruction* instr) {
MOZ_ASSERT(instr->bits(27, 24) == 0xE && instr->opc1Value() == 0x7 &&
instr->bit(19) == 1 && instr->bit(17) == 1 &&
instr->bits(11, 9) == 0x5 && instr->bit(6) == 1 &&
instr->bit(4) == 0);
int size = (instr->bit(7) == 1) ? 32 : 16;
int fraction_bits = size - ((instr->bits(3, 0) << 1) | instr->bit(5));
double mult = 1 << fraction_bits;
MOZ_ASSERT(size == 32); // Only handling size == 32 for now.
// Conversion between floating-point and integer.
bool to_fixed = (instr->bit(18) == 1);
VFPRegPrecision precision =
(instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision;
if (to_fixed) {
// We are playing with code close to the C++ standard's limits below,
// hence the very simple code and heavy checks.
//
// Note: C++ defines default type casting from floating point to integer
// as (close to) rounding toward zero ("fractional part discarded").
int dst = instr->VFPDRegValue(precision);
bool unsigned_integer = (instr->bit(16) == 1);
bool double_precision = (precision == kDoublePrecision);
double val;
if (double_precision) {
get_double_from_d_register(dst, &val);
} else {
float fval;
get_float_from_s_register(dst, &fval);
val = double(fval);
}
// Scale value by specified number of fraction bits.
val *= mult;
// Rounding down towards zero. No need to account for the rounding error
// as this instruction always rounds down towards zero. See SimRZ below.
int temp = unsigned_integer ? static_cast<uint32_t>(val)
: static_cast<int32_t>(val);
inv_op_vfp_flag_ = get_inv_op_vfp_flag(SimRZ, val, unsigned_integer);
double abs_diff = unsigned_integer
? std::fabs(val - static_cast<uint32_t>(temp))
: std::fabs(val - temp);
inexact_vfp_flag_ = (abs_diff != 0);
if (inv_op_vfp_flag_) {
temp = VFPConversionSaturate(val, unsigned_integer);
}
// Update the destination register.
if (double_precision) {
uint32_t dbl[2];
dbl[0] = temp;
dbl[1] = 0;
set_d_register(dst, dbl);
} else {
set_s_register_from_sinteger(dst, temp);
}
} else {
MOZ_CRASH(); // Not implemented, fixed to float.
}
}
void Simulator::decodeType6CoprocessorIns(SimInstruction* instr) {
MOZ_ASSERT(instr->typeValue() == 6);
if (instr->coprocessorValue() == 0xA) {
switch (instr->opcodeValue()) {
case 0x8:
case 0xA:
case 0xC:
case 0xE: { // Load and store single precision float to memory.
int rn = instr->rnValue();
int vd = instr->VFPDRegValue(kSinglePrecision);
int offset = instr->immed8Value();
if (!instr->hasU()) {
offset = -offset;
}
int32_t address = get_register(rn) + 4 * offset;
if (instr->hasL()) {
// Load double from memory: vldr.
set_s_register_from_sinteger(vd, readW(address, instr));
} else {
// Store double to memory: vstr.
writeW(address, get_sinteger_from_s_register(vd), instr);
}
break;
}
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x9:
case 0xB:
// Load/store multiple single from memory: vldm/vstm.
handleVList(instr);
break;
default:
MOZ_CRASH();
}
} else if (instr->coprocessorValue() == 0xB) {
switch (instr->opcodeValue()) {
case 0x2:
// Load and store double to two GP registers
if (instr->bits(7, 6) != 0 || instr->bit(4) != 1) {
MOZ_CRASH(); // Not used atm.
} else {
int rt = instr->rtValue();
int rn = instr->rnValue();
int vm = instr->VFPMRegValue(kDoublePrecision);
if (instr->hasL()) {
int32_t data[2];
double d;
get_double_from_d_register(vm, &d);
memcpy(data, &d, 8);
set_register(rt, data[0]);
set_register(rn, data[1]);
} else {
int32_t data[] = {get_register(rt), get_register(rn)};
double d;
memcpy(&d, data, 8);
set_d_register_from_double(vm, d);
}
}
break;
case 0x8:
case 0xA:
case 0xC:
case 0xE: { // Load and store double to memory.
int rn = instr->rnValue();
int vd = instr->VFPDRegValue(kDoublePrecision);
int offset = instr->immed8Value();
if (!instr->hasU()) {
offset = -offset;
}
int32_t address = get_register(rn) + 4 * offset;
if (instr->hasL()) {
// Load double from memory: vldr.
uint64_t data = readQ(address, instr);
double val;
memcpy(&val, &data, 8);
set_d_register_from_double(vd, val);
} else {
// Store double to memory: vstr.
uint64_t data;
double val;
get_double_from_d_register(vd, &val);
memcpy(&data, &val, 8);
writeQ(address, data, instr);
}
break;
}
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x9:
case 0xB:
// Load/store multiple double from memory: vldm/vstm.
handleVList(instr);
break;
default:
MOZ_CRASH();
}
} else {
MOZ_CRASH();
}
}
void Simulator::decodeSpecialCondition(SimInstruction* instr) {
switch (instr->specialValue()) {
case 5:
if (instr->bits(18, 16) == 0 && instr->bits(11, 6) == 0x28 &&
instr->bit(4) == 1) {
// vmovl signed
if ((instr->vdValue() & 1) != 0) {
MOZ_CRASH("Undefined behavior");
}
int Vd = (instr->bit(22) << 3) | (instr->vdValue() >> 1);
int Vm = (instr->bit(5) << 4) | instr->vmValue();
int imm3 = instr->bits(21, 19);
if (imm3 != 1 && imm3 != 2 && imm3 != 4) {
MOZ_CRASH();
}
int esize = 8 * imm3;
int elements = 64 / esize;
int8_t from[8];
get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
int16_t to[8];
int e = 0;
while (e < elements) {
to[e] = from[e];
e++;
}
set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
} else {
MOZ_CRASH();
}
break;
case 7:
if (instr->bits(18, 16) == 0 && instr->bits(11, 6) == 0x28 &&
instr->bit(4) == 1) {
// vmovl unsigned.
if ((instr->vdValue() & 1) != 0) {
MOZ_CRASH("Undefined behavior");
}
int Vd = (instr->bit(22) << 3) | (instr->vdValue() >> 1);
int Vm = (instr->bit(5) << 4) | instr->vmValue();
int imm3 = instr->bits(21, 19);
if (imm3 != 1 && imm3 != 2 && imm3 != 4) {
MOZ_CRASH();
}
int esize = 8 * imm3;
int elements = 64 / esize;
uint8_t from[8];
get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
uint16_t to[8];
int e = 0;
while (e < elements) {
to[e] = from[e];
e++;
}
set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
} else {
MOZ_CRASH();
}
break;
case 8:
if (instr->bits(21, 20) == 0) {
// vst1
int Vd = (instr->bit(22) << 4) | instr->vdValue();
int Rn = instr->vnValue();
int type = instr->bits(11, 8);
int Rm = instr->vmValue();
int32_t address = get_register(Rn);
int regs = 0;
switch (type) {
case nlt_1:
regs = 1;
break;
case nlt_2:
regs = 2;
break;
case nlt_3:
regs = 3;
break;
case nlt_4:
regs = 4;
break;
default:
MOZ_CRASH();
break;
}
int r = 0;
while (r < regs) {
uint32_t data[2];
get_d_register(Vd + r, data);
// TODO: We should AllowUnaligned here only if the alignment attribute
// of the instruction calls for default alignment.
//
// Use writeQ to get handling of traps right. (The spec says to
// perform two individual word writes, but let's not worry about
// that.)
writeQ(address, (uint64_t(data[1]) << 32) | uint64_t(data[0]), instr,
AllowUnaligned);
address += 8;
r++;
}
if (Rm != 15) {
if (Rm == 13) {
set_register(Rn, address);
} else {
set_register(Rn, get_register(Rn) + get_register(Rm));
}
}
} else if (instr->bits(21, 20) == 2) {
// vld1
int Vd = (instr->bit(22) << 4) | instr->vdValue();
int Rn = instr->vnValue();
int type = instr->bits(11, 8);
int Rm = instr->vmValue();
int32_t address = get_register(Rn);
int regs = 0;
switch (type) {
case nlt_1:
regs = 1;
break;
case nlt_2:
regs = 2;
break;
case nlt_3:
regs = 3;
break;
case nlt_4:
regs = 4;
break;
default:
MOZ_CRASH();
break;
}
int r = 0;
while (r < regs) {
uint32_t data[2];
// TODO: We should AllowUnaligned here only if the alignment attribute
// of the instruction calls for default alignment.
//
// Use readQ to get handling of traps right. (The spec says to
// perform two individual word reads, but let's not worry about that.)
uint64_t tmp = readQ(address, instr, AllowUnaligned);
data[0] = tmp;
data[1] = tmp >> 32;
set_d_register(Vd + r, data);
address += 8;
r++;
}
if (Rm != 15) {
if (Rm == 13) {
set_register(Rn, address);
} else {
set_register(Rn, get_register(Rn) + get_register(Rm));
}
}
} else {
MOZ_CRASH();
}
break;
case 9:
if (instr->bits(9, 8) == 0) {
int Vd = (instr->bit(22) << 4) | instr->vdValue();
int Rn = instr->vnValue();
int size = instr->bits(11, 10);
int Rm = instr->vmValue();
int index = instr->bits(7, 5);
int align = instr->bit(4);
int32_t address = get_register(Rn);
if (size != 2 || align) {
MOZ_CRASH("NYI");
}
int a = instr->bits(5, 4);
if (a != 0 && a != 3) {
MOZ_CRASH("Unspecified");
}
if (index > 1) {
Vd++;
index -= 2;
}
uint32_t data[2];
get_d_register(Vd, data);
switch (instr->bits(21, 20)) {
case 0:
// vst1 single element from one lane
writeW(address, data[index], instr, AllowUnaligned);
break;
case 2:
// vld1 single element to one lane
data[index] = readW(address, instr, AllowUnaligned);
set_d_register(Vd, data);
break;
default:
MOZ_CRASH("NYI");
}
address += 4;
if (Rm != 15) {
if (Rm == 13) {
set_register(Rn, address);
} else {
set_register(Rn, get_register(Rn) + get_register(Rm));
}
}
} else {
MOZ_CRASH();
}
break;
case 0xA:
if (instr->bits(31, 20) == 0xf57) {
switch (instr->bits(7, 4)) {
case 1: // CLREX
exclusiveMonitorClear();
break;
case 5: // DMB
AtomicOperations::fenceSeqCst();
break;
case 4: // DSB
// We do not use DSB.
MOZ_CRASH("DSB unimplemented");
case 6: // ISB
// We do not use ISB.
MOZ_CRASH("ISB unimplemented");
default:
MOZ_CRASH();
}
} else {
MOZ_CRASH();
}
break;
case 0xB:
if (instr->bits(22, 20) == 5 && instr->bits(15, 12) == 0xf) {
// pld: ignore instruction.
} else {
MOZ_CRASH();
}
break;
case 0x1C:
case 0x1D:
if (instr->bit(4) == 1 && instr->bits(11, 9) != 5) {
// MCR, MCR2, MRC, MRC2 with cond == 15
decodeType7CoprocessorIns(instr);
} else {
MOZ_CRASH();
}
break;
default:
MOZ_CRASH();
}
}
// Executes the current instruction.
void Simulator::instructionDecode(SimInstruction* instr) {
if (!SimulatorProcess::ICacheCheckingDisableCount) {
AutoLockSimulatorCache als;
SimulatorProcess::checkICacheLocked(instr);
}
pc_modified_ = false;
static const uint32_t kSpecialCondition = 15 << 28;
if (instr->conditionField() == kSpecialCondition) {
decodeSpecialCondition(instr);
} else if (conditionallyExecute(instr)) {
switch (instr->typeValue()) {
case 0:
case 1:
decodeType01(instr);
break;
case 2:
decodeType2(instr);
break;
case 3:
decodeType3(instr);
break;
case 4:
decodeType4(instr);
break;
case 5:
decodeType5(instr);
break;
case 6:
decodeType6(instr);
break;
case 7:
decodeType7(instr);
break;
default:
MOZ_CRASH();
break;
}
// If the instruction is a non taken conditional stop, we need to skip
// the inlined message address.
} else if (instr->isStop()) {
set_pc(get_pc() + 2 * SimInstruction::kInstrSize);
}
if (!pc_modified_) {
set_register(pc,
reinterpret_cast<int32_t>(instr) + SimInstruction::kInstrSize);
}
}
void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) {
single_stepping_ = true;
single_step_callback_ = cb;
single_step_callback_arg_ = arg;
single_step_callback_(single_step_callback_arg_, this, (void*)get_pc());
}
void Simulator::disable_single_stepping() {
if (!single_stepping_) {
return;
}
single_step_callback_(single_step_callback_arg_, this, (void*)get_pc());
single_stepping_ = false;
single_step_callback_ = nullptr;
single_step_callback_arg_ = nullptr;
}
template <bool EnableStopSimAt>
void Simulator::execute() {
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
// Get the PC to simulate. Cannot use the accessor here as we need the raw
// PC value and not the one used as input to arithmetic instructions.
int program_counter = get_pc();
while (program_counter != end_sim_pc) {
if (EnableStopSimAt && (icount_ == Simulator::StopSimAt)) {
fprintf(stderr, "\nStopped simulation at icount %lld\n", icount_);
ArmDebugger dbg(this);
dbg.debug();
} else {
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this,
(void*)program_counter);
}
SimInstruction* instr =
reinterpret_cast<SimInstruction*>(program_counter);
instructionDecode(instr);
icount_++;
}
program_counter = get_pc();
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
}
void Simulator::callInternal(uint8_t* entry) {
// Prepare to execute the code at entry.
set_register(pc, reinterpret_cast<int32_t>(entry));
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
set_register(lr, end_sim_pc);
// Remember the values of callee-saved registers. The code below assumes
// that r9 is not used as sb (static base) in simulator code and therefore
// is regarded as a callee-saved register.
int32_t r4_val = get_register(r4);
int32_t r5_val = get_register(r5);
int32_t r6_val = get_register(r6);
int32_t r7_val = get_register(r7);
int32_t r8_val = get_register(r8);
int32_t r9_val = get_register(r9);
int32_t r10_val = get_register(r10);
int32_t r11_val = get_register(r11);
// Remember d8 to d15 which are callee-saved.
uint64_t d8_val;
get_d_register(d8, &d8_val);
uint64_t d9_val;
get_d_register(d9, &d9_val);
uint64_t d10_val;
get_d_register(d10, &d10_val);
uint64_t d11_val;
get_d_register(d11, &d11_val);
uint64_t d12_val;
get_d_register(d12, &d12_val);
uint64_t d13_val;
get_d_register(d13, &d13_val);
uint64_t d14_val;
get_d_register(d14, &d14_val);
uint64_t d15_val;
get_d_register(d15, &d15_val);
// Set up the callee-saved registers with a known value. To be able to check
// that they are preserved properly across JS execution.
int32_t callee_saved_value = uint32_t(icount_);
uint64_t callee_saved_value_d = uint64_t(icount_);
if (!skipCalleeSavedRegsCheck) {
set_register(r4, callee_saved_value);
set_register(r5, callee_saved_value);
set_register(r6, callee_saved_value);
set_register(r7, callee_saved_value);
set_register(r8, callee_saved_value);
set_register(r9, callee_saved_value);
set_register(r10, callee_saved_value);
set_register(r11, callee_saved_value);
set_d_register(d8, &callee_saved_value_d);
set_d_register(d9, &callee_saved_value_d);
set_d_register(d10, &callee_saved_value_d);
set_d_register(d11, &callee_saved_value_d);
set_d_register(d12, &callee_saved_value_d);
set_d_register(d13, &callee_saved_value_d);
set_d_register(d14, &callee_saved_value_d);
set_d_register(d15, &callee_saved_value_d);
}
// Start the simulation.
if (Simulator::StopSimAt != -1L) {
execute<true>();
} else {
execute<false>();
}
if (!skipCalleeSavedRegsCheck) {
// Check that the callee-saved registers have been preserved.
MOZ_ASSERT(callee_saved_value == get_register(r4));
MOZ_ASSERT(callee_saved_value == get_register(r5));
MOZ_ASSERT(callee_saved_value == get_register(r6));
MOZ_ASSERT(callee_saved_value == get_register(r7));
MOZ_ASSERT(callee_saved_value == get_register(r8));
MOZ_ASSERT(callee_saved_value == get_register(r9));
MOZ_ASSERT(callee_saved_value == get_register(r10));
MOZ_ASSERT(callee_saved_value == get_register(r11));
uint64_t value;
get_d_register(d8, &value);
MOZ_ASSERT(callee_saved_value_d == value);
get_d_register(d9, &value);
MOZ_ASSERT(callee_saved_value_d == value);
get_d_register(d10, &value);
MOZ_ASSERT(callee_saved_value_d == value);
get_d_register(d11, &value);
MOZ_ASSERT(callee_saved_value_d == value);
get_d_register(d12, &value);
MOZ_ASSERT(callee_saved_value_d == value);
get_d_register(d13, &value);
MOZ_ASSERT(callee_saved_value_d == value);
get_d_register(d14, &value);
MOZ_ASSERT(callee_saved_value_d == value);
get_d_register(d15, &value);
MOZ_ASSERT(callee_saved_value_d == value);
// Restore callee-saved registers with the original value.
set_register(r4, r4_val);
set_register(r5, r5_val);
set_register(r6, r6_val);
set_register(r7, r7_val);
set_register(r8, r8_val);
set_register(r9, r9_val);
set_register(r10, r10_val);
set_register(r11, r11_val);
set_d_register(d8, &d8_val);
set_d_register(d9, &d9_val);
set_d_register(d10, &d10_val);
set_d_register(d11, &d11_val);
set_d_register(d12, &d12_val);
set_d_register(d13, &d13_val);
set_d_register(d14, &d14_val);
set_d_register(d15, &d15_val);
}
}
int32_t Simulator::call(uint8_t* entry, int argument_count, ...) {
va_list parameters;
va_start(parameters, argument_count);
// First four arguments passed in registers.
if (argument_count >= 1) {
set_register(r0, va_arg(parameters, int32_t));
}
if (argument_count >= 2) {
set_register(r1, va_arg(parameters, int32_t));
}
if (argument_count >= 3) {
set_register(r2, va_arg(parameters, int32_t));
}
if (argument_count >= 4) {
set_register(r3, va_arg(parameters, int32_t));
}
// Remaining arguments passed on stack.
int original_stack = get_register(sp);
int entry_stack = original_stack;
if (argument_count >= 4) {
entry_stack -= (argument_count - 4) * sizeof(int32_t);
}
entry_stack &= ~ABIStackAlignment;
// Store remaining arguments on stack, from low to high memory.
intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
for (int i = 4; i < argument_count; i++) {
stack_argument[i - 4] = va_arg(parameters, int32_t);
}
va_end(parameters);
set_register(sp, entry_stack);
callInternal(entry);
// Pop stack passed arguments.
MOZ_ASSERT(entry_stack == get_register(sp));
set_register(sp, original_stack);
int32_t result = get_register(r0);
return result;
}
Simulator* Simulator::Current() {
JSContext* cx = TlsContext.get();
MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime()));
return cx->simulator();
}
} // namespace jit
} // namespace js
js::jit::Simulator* JSContext::simulator() const { return simulator_; }