Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_RECT_H_
#define MOZILLA_GFX_RECT_H_
#include "BaseRect.h"
#include "BaseMargin.h"
#include "NumericTools.h"
#include "Point.h"
#include "Tools.h"
#include "mozilla/Maybe.h"
#include <cmath>
#include <cstdint>
namespace mozilla {
template <typename>
struct IsPixel;
namespace gfx {
template <class Units, class F>
struct RectTyped;
template <class Units>
struct MOZ_EMPTY_BASES IntMarginTyped
: public BaseMargin<int32_t, IntMarginTyped<Units>, IntCoordTyped<Units> >,
public Units {
static_assert(IsPixel<Units>::value,
"'Units' must be a coordinate system tag");
typedef IntCoordTyped<Units> Coord;
typedef BaseMargin<int32_t, IntMarginTyped<Units>, Coord> Super;
IntMarginTyped() : Super() {
static_assert(sizeof(IntMarginTyped) == sizeof(int32_t) * 4,
"Would be unfortunate otherwise!");
}
IntMarginTyped(Coord aTop, Coord aRight, Coord aBottom, Coord aLeft)
: Super(aTop, aRight, aBottom, aLeft) {}
// XXX When all of the code is ported, the following functions to convert
// to and from unknown types should be removed.
static IntMarginTyped<Units> FromUnknownMargin(
const IntMarginTyped<UnknownUnits>& aMargin) {
return IntMarginTyped<Units>(aMargin.top.value, aMargin.right.value,
aMargin.bottom.value, aMargin.left.value);
}
IntMarginTyped<UnknownUnits> ToUnknownMargin() const {
return IntMarginTyped<UnknownUnits>(this->top, this->right, this->bottom,
this->left);
}
};
typedef IntMarginTyped<UnknownUnits> IntMargin;
template <class Units, class F = Float>
struct MarginTyped
: public BaseMargin<F, MarginTyped<Units, F>, CoordTyped<Units, F> >,
public Units {
static_assert(IsPixel<Units>::value,
"'Units' must be a coordinate system tag");
typedef CoordTyped<Units, F> Coord;
typedef BaseMargin<F, MarginTyped<Units, F>, Coord> Super;
MarginTyped() : Super() {}
MarginTyped(Coord aTop, Coord aRight, Coord aBottom, Coord aLeft)
: Super(aTop, aRight, aBottom, aLeft) {}
explicit MarginTyped(const IntMarginTyped<Units>& aMargin)
: Super(F(aMargin.top), F(aMargin.right), F(aMargin.bottom),
F(aMargin.left)) {}
bool WithinEpsilonOf(const MarginTyped& aOther, F aEpsilon) const {
return fabs(this->left - aOther.left) < aEpsilon &&
fabs(this->top - aOther.top) < aEpsilon &&
fabs(this->right - aOther.right) < aEpsilon &&
fabs(this->bottom - aOther.bottom) < aEpsilon;
}
IntMarginTyped<Units> Rounded() const {
return IntMarginTyped<Units>(int32_t(std::floor(this->top + 0.5f)),
int32_t(std::floor(this->right + 0.5f)),
int32_t(std::floor(this->bottom + 0.5f)),
int32_t(std::floor(this->left + 0.5f)));
}
};
typedef MarginTyped<UnknownUnits> Margin;
typedef MarginTyped<UnknownUnits, double> MarginDouble;
template <class Units>
IntMarginTyped<Units> RoundedToInt(const MarginTyped<Units>& aMargin) {
return aMargin.Rounded();
}
template <class Units>
struct MOZ_EMPTY_BASES IntRectTyped
: public BaseRect<int32_t, IntRectTyped<Units>, IntPointTyped<Units>,
IntSizeTyped<Units>, IntMarginTyped<Units> >,
public Units {
static_assert(IsPixel<Units>::value,
"'Units' must be a coordinate system tag");
typedef BaseRect<int32_t, IntRectTyped<Units>, IntPointTyped<Units>,
IntSizeTyped<Units>, IntMarginTyped<Units> >
Super;
typedef IntRectTyped<Units> Self;
typedef IntParam<int32_t> ToInt;
IntRectTyped() : Super() {
static_assert(sizeof(IntRectTyped) == sizeof(int32_t) * 4,
"Would be unfortunate otherwise!");
}
IntRectTyped(const IntPointTyped<Units>& aPos,
const IntSizeTyped<Units>& aSize)
: Super(aPos, aSize) {}
IntRectTyped(ToInt aX, ToInt aY, ToInt aWidth, ToInt aHeight)
: Super(aX.value, aY.value, aWidth.value, aHeight.value) {}
static IntRectTyped<Units> RoundIn(float aX, float aY, float aW, float aH) {
return IntRectTyped<Units>::RoundIn(
RectTyped<Units, float>(aX, aY, aW, aH));
}
static IntRectTyped<Units> RoundOut(float aX, float aY, float aW, float aH) {
return IntRectTyped<Units>::RoundOut(
RectTyped<Units, float>(aX, aY, aW, aH));
}
static IntRectTyped<Units> Round(float aX, float aY, float aW, float aH) {
return IntRectTyped<Units>::Round(RectTyped<Units, float>(aX, aY, aW, aH));
}
static IntRectTyped<Units> Truncate(float aX, float aY, float aW, float aH) {
return IntRectTyped<Units>(IntPointTyped<Units>::Truncate(aX, aY),
IntSizeTyped<Units>::Truncate(aW, aH));
}
static IntRectTyped<Units> RoundIn(const RectTyped<Units, float>& aRect) {
auto tmp(aRect);
tmp.RoundIn();
return IntRectTyped(int32_t(tmp.X()), int32_t(tmp.Y()),
int32_t(tmp.Width()), int32_t(tmp.Height()));
}
static IntRectTyped<Units> RoundOut(const RectTyped<Units, float>& aRect) {
auto tmp(aRect);
tmp.RoundOut();
return IntRectTyped(int32_t(tmp.X()), int32_t(tmp.Y()),
int32_t(tmp.Width()), int32_t(tmp.Height()));
}
static IntRectTyped<Units> Round(const RectTyped<Units, float>& aRect) {
auto tmp(aRect);
tmp.Round();
return IntRectTyped(int32_t(tmp.X()), int32_t(tmp.Y()),
int32_t(tmp.Width()), int32_t(tmp.Height()));
}
static IntRectTyped<Units> Truncate(const RectTyped<Units, float>& aRect) {
return IntRectTyped::Truncate(aRect.X(), aRect.Y(), aRect.Width(),
aRect.Height());
}
// Rounding isn't meaningful on an integer rectangle.
void Round() {}
void RoundIn() {}
void RoundOut() {}
// XXX When all of the code is ported, the following functions to convert
// to and from unknown types should be removed.
static IntRectTyped<Units> FromUnknownRect(
const IntRectTyped<UnknownUnits>& rect) {
return IntRectTyped<Units>(rect.X(), rect.Y(), rect.Width(), rect.Height());
}
IntRectTyped<UnknownUnits> ToUnknownRect() const {
return IntRectTyped<UnknownUnits>(this->X(), this->Y(), this->Width(),
this->Height());
}
bool Overflows() const {
CheckedInt<int32_t> xMost = this->X();
xMost += this->Width();
CheckedInt<int32_t> yMost = this->Y();
yMost += this->Height();
return !xMost.isValid() || !yMost.isValid();
}
// Same as Union(), but in the cases where aRect is non-empty, the union is
// done while guarding against overflow. If an overflow is detected, Nothing
// is returned.
[[nodiscard]] Maybe<Self> SafeUnion(const Self& aRect) const {
if (this->IsEmpty()) {
return aRect.Overflows() ? Nothing() : Some(aRect);
} else if (aRect.IsEmpty()) {
return Some(*static_cast<const Self*>(this));
} else {
return this->SafeUnionEdges(aRect);
}
}
// Same as UnionEdges, but guards against overflow. If an overflow is
// detected, Nothing is returned.
[[nodiscard]] Maybe<Self> SafeUnionEdges(const Self& aRect) const {
if (this->Overflows() || aRect.Overflows()) {
return Nothing();
}
// If neither |this| nor |aRect| overflow, then their XMost/YMost values
// should be safe to use.
CheckedInt<int32_t> newX = std::min(this->x, aRect.x);
CheckedInt<int32_t> newY = std::min(this->y, aRect.y);
CheckedInt<int32_t> newXMost = std::max(this->XMost(), aRect.XMost());
CheckedInt<int32_t> newYMost = std::max(this->YMost(), aRect.YMost());
CheckedInt<int32_t> newW = newXMost - newX;
CheckedInt<int32_t> newH = newYMost - newY;
if (!newW.isValid() || !newH.isValid()) {
return Nothing();
}
return Some(Self(newX.value(), newY.value(), newW.value(), newH.value()));
}
// This is here only to keep IPDL-generated code happy. DO NOT USE.
bool operator==(const IntRectTyped<Units>& aRect) const {
return IntRectTyped<Units>::IsEqualEdges(aRect);
}
void InflateToMultiple(const IntSizeTyped<Units>& aTileSize) {
if (this->IsEmpty()) {
return;
}
int32_t yMost = this->YMost();
int32_t xMost = this->XMost();
this->x = mozilla::RoundDownToMultiple(this->x, aTileSize.width);
this->y = mozilla::RoundDownToMultiple(this->y, aTileSize.height);
xMost = mozilla::RoundUpToMultiple(xMost, aTileSize.width);
yMost = mozilla::RoundUpToMultiple(yMost, aTileSize.height);
this->SetWidth(xMost - this->x);
this->SetHeight(yMost - this->y);
}
};
typedef IntRectTyped<UnknownUnits> IntRect;
template <class Units, class F = Float>
struct MOZ_EMPTY_BASES RectTyped
: public BaseRect<F, RectTyped<Units, F>, PointTyped<Units, F>,
SizeTyped<Units, F>, MarginTyped<Units, F> >,
public Units {
static_assert(IsPixel<Units>::value,
"'Units' must be a coordinate system tag");
typedef BaseRect<F, RectTyped<Units, F>, PointTyped<Units, F>,
SizeTyped<Units, F>, MarginTyped<Units, F> >
Super;
RectTyped() : Super() {
static_assert(sizeof(RectTyped) == sizeof(F) * 4,
"Would be unfortunate otherwise!");
}
RectTyped(const PointTyped<Units, F>& aPos, const SizeTyped<Units, F>& aSize)
: Super(aPos, aSize) {}
RectTyped(F _x, F _y, F _width, F _height) : Super(_x, _y, _width, _height) {}
explicit RectTyped(const IntRectTyped<Units>& rect)
: Super(F(rect.X()), F(rect.Y()), F(rect.Width()), F(rect.Height())) {}
void NudgeToIntegers() {
NudgeToInteger(&(this->x));
NudgeToInteger(&(this->y));
NudgeToInteger(&(this->width));
NudgeToInteger(&(this->height));
}
bool ToIntRect(IntRectTyped<Units>* aOut) const {
*aOut =
IntRectTyped<Units>(int32_t(this->X()), int32_t(this->Y()),
int32_t(this->Width()), int32_t(this->Height()));
return RectTyped<Units, F>(F(aOut->X()), F(aOut->Y()), F(aOut->Width()),
F(aOut->Height()))
.IsEqualEdges(*this);
}
// XXX When all of the code is ported, the following functions to convert to
// and from unknown types should be removed.
static RectTyped<Units, F> FromUnknownRect(
const RectTyped<UnknownUnits, F>& rect) {
return RectTyped<Units, F>(rect.X(), rect.Y(), rect.Width(), rect.Height());
}
RectTyped<UnknownUnits, F> ToUnknownRect() const {
return RectTyped<UnknownUnits, F>(this->X(), this->Y(), this->Width(),
this->Height());
}
// This is here only to keep IPDL-generated code happy. DO NOT USE.
bool operator==(const RectTyped<Units, F>& aRect) const {
return RectTyped<Units, F>::IsEqualEdges(aRect);
}
bool WithinEpsilonOf(const RectTyped& aOther, F aEpsilon) const {
return fabs(this->x - aOther.x) < aEpsilon &&
fabs(this->y - aOther.y) < aEpsilon &&
fabs(this->width - aOther.width) < aEpsilon &&
fabs(this->height - aOther.height) < aEpsilon;
}
};
typedef RectTyped<UnknownUnits> Rect;
typedef RectTyped<UnknownUnits, double> RectDouble;
template <class Units>
IntRectTyped<Units> RoundedToInt(const RectTyped<Units>& aRect) {
RectTyped<Units> copy(aRect);
copy.Round();
return IntRectTyped<Units>(int32_t(copy.X()), int32_t(copy.Y()),
int32_t(copy.Width()), int32_t(copy.Height()));
}
template <class Units>
bool RectIsInt32Safe(const RectTyped<Units>& aRect) {
float min = (float)std::numeric_limits<std::int32_t>::min();
float max = (float)std::numeric_limits<std::int32_t>::max();
return aRect.x > min && aRect.y > min && aRect.width < max &&
aRect.height < max && aRect.XMost() < max && aRect.YMost() < max;
}
template <class Units>
IntRectTyped<Units> RoundedIn(const RectTyped<Units>& aRect) {
return IntRectTyped<Units>::RoundIn(aRect);
}
template <class Units>
IntRectTyped<Units> RoundedOut(const RectTyped<Units>& aRect) {
return IntRectTyped<Units>::RoundOut(aRect);
}
template <class Units>
IntRectTyped<Units> TruncatedToInt(const RectTyped<Units>& aRect) {
return IntRectTyped<Units>::Truncate(aRect);
}
template <class Units>
RectTyped<Units> IntRectToRect(const IntRectTyped<Units>& aRect) {
return RectTyped<Units>(aRect.X(), aRect.Y(), aRect.Width(), aRect.Height());
}
// Convenience functions for intersecting and unioning two rectangles wrapped in
// Maybes.
template <typename Rect>
Maybe<Rect> IntersectMaybeRects(const Maybe<Rect>& a, const Maybe<Rect>& b) {
if (!a) {
return b;
} else if (!b) {
return a;
} else {
return Some(a->Intersect(*b));
}
}
template <typename Rect>
Maybe<Rect> UnionMaybeRects(const Maybe<Rect>& a, const Maybe<Rect>& b) {
if (!a) {
return b;
} else if (!b) {
return a;
} else {
return Some(a->Union(*b));
}
}
struct RectCornerRadii final {
Size radii[eCornerCount];
RectCornerRadii() = default;
explicit RectCornerRadii(Float radius) {
for (const auto i : mozilla::AllPhysicalCorners()) {
radii[i].SizeTo(radius, radius);
}
}
RectCornerRadii(Float radiusX, Float radiusY) {
for (const auto i : mozilla::AllPhysicalCorners()) {
radii[i].SizeTo(radiusX, radiusY);
}
}
RectCornerRadii(Float tl, Float tr, Float br, Float bl) {
radii[eCornerTopLeft].SizeTo(tl, tl);
radii[eCornerTopRight].SizeTo(tr, tr);
radii[eCornerBottomRight].SizeTo(br, br);
radii[eCornerBottomLeft].SizeTo(bl, bl);
}
RectCornerRadii(const Size& tl, const Size& tr, const Size& br,
const Size& bl) {
radii[eCornerTopLeft] = tl;
radii[eCornerTopRight] = tr;
radii[eCornerBottomRight] = br;
radii[eCornerBottomLeft] = bl;
}
const Size& operator[](size_t aCorner) const { return radii[aCorner]; }
Size& operator[](size_t aCorner) { return radii[aCorner]; }
bool operator==(const RectCornerRadii& aOther) const {
return TopLeft() == aOther.TopLeft() && TopRight() == aOther.TopRight() &&
BottomRight() == aOther.BottomRight() &&
BottomLeft() == aOther.BottomLeft();
}
bool AreRadiiSame() const {
return TopLeft() == TopRight() && TopLeft() == BottomRight() &&
TopLeft() == BottomLeft();
}
void Scale(Float aXScale, Float aYScale) {
for (const auto i : mozilla::AllPhysicalCorners()) {
radii[i].Scale(aXScale, aYScale);
}
}
const Size TopLeft() const { return radii[eCornerTopLeft]; }
Size& TopLeft() { return radii[eCornerTopLeft]; }
const Size TopRight() const { return radii[eCornerTopRight]; }
Size& TopRight() { return radii[eCornerTopRight]; }
const Size BottomRight() const { return radii[eCornerBottomRight]; }
Size& BottomRight() { return radii[eCornerBottomRight]; }
const Size BottomLeft() const { return radii[eCornerBottomLeft]; }
Size& BottomLeft() { return radii[eCornerBottomLeft]; }
bool IsEmpty() const {
return TopLeft().IsEmpty() && TopRight().IsEmpty() &&
BottomRight().IsEmpty() && BottomLeft().IsEmpty();
}
};
/* A rounded rectangle abstraction.
*
* This can represent a rectangle with a different pair of radii on each corner.
*
* Note: CoreGraphics and Direct2D only support rounded rectangle with the same
* radii on all corners. However, supporting CSS's border-radius requires the
* extra flexibility. */
struct RoundedRect {
typedef mozilla::gfx::RectCornerRadii RectCornerRadii;
RoundedRect(const Rect& aRect, const RectCornerRadii& aCorners)
: rect(aRect), corners(aCorners) {}
void Deflate(Float aTopWidth, Float aBottomWidth, Float aLeftWidth,
Float aRightWidth) {
// deflate the internal rect
rect.SetRect(rect.X() + aLeftWidth, rect.Y() + aTopWidth,
std::max(0.f, rect.Width() - aLeftWidth - aRightWidth),
std::max(0.f, rect.Height() - aTopWidth - aBottomWidth));
corners.radii[mozilla::eCornerTopLeft].width = std::max(
0.f, corners.radii[mozilla::eCornerTopLeft].width - aLeftWidth);
corners.radii[mozilla::eCornerTopLeft].height = std::max(
0.f, corners.radii[mozilla::eCornerTopLeft].height - aTopWidth);
corners.radii[mozilla::eCornerTopRight].width = std::max(
0.f, corners.radii[mozilla::eCornerTopRight].width - aRightWidth);
corners.radii[mozilla::eCornerTopRight].height = std::max(
0.f, corners.radii[mozilla::eCornerTopRight].height - aTopWidth);
corners.radii[mozilla::eCornerBottomLeft].width = std::max(
0.f, corners.radii[mozilla::eCornerBottomLeft].width - aLeftWidth);
corners.radii[mozilla::eCornerBottomLeft].height = std::max(
0.f, corners.radii[mozilla::eCornerBottomLeft].height - aBottomWidth);
corners.radii[mozilla::eCornerBottomRight].width = std::max(
0.f, corners.radii[mozilla::eCornerBottomRight].width - aRightWidth);
corners.radii[mozilla::eCornerBottomRight].height = std::max(
0.f, corners.radii[mozilla::eCornerBottomRight].height - aBottomWidth);
}
Rect rect;
RectCornerRadii corners;
};
} // namespace gfx
} // namespace mozilla
#endif /* MOZILLA_GFX_RECT_H_ */